Skip to main content

Dietary Fiber and Resistant Starch

A Nutritional Classification of Plant Polysaccharides

  • Chapter
Dietary Fiber

Abstract

Plant polysaccharides may be separated into two broad categories. Starch, a ubiquitous storage polysaccharide, is an α-linked glucan and is the major carbohydrate of dietary staples such as cereal grains and potatoes. The nonstarch polysaccharides (NSP) of plants, such as cellulose, pectin, and hemicellulose, are non-α-glucan polysaccharides. The NSP tend to have a structural function and are the principal components of the plant cell wall. Recently NSP have become the objective in the measurement of dietary fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Asp, N.-G., and Johansson, C.-G., 1984, Dietary fibre analysis, Nutr. Abstr. Rev. 54:735–752.

    Google Scholar 

  • Berry, C. S., 1984, Resistant starch: Analytical nuisance or man-made dietary fibre? FMBRA Bull. 6: 236–248.

    Google Scholar 

  • Dunaif, G., and Schneeman, B. O., 1981, The effect of dietary fiber on human pancreatic activity in vitro, Am. J. Clin. Nutr. 34:1034–1035.

    CAS  Google Scholar 

  • Englyst, H. J. N., 1985, Dietary Polysaccharide Breakdown in the Gut of Man, Ph.D. Thesis, University of Cambridge, U.K.

    Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1984, Simplified method for the measurement of total non-starch polysaccharides by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst 109:937–942.

    Article  CAS  Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1985, Digestion of the polysaccharides of some cereal foods in the human small intestine, Am. J. Clin. Nutr. 42:778–787.

    CAS  Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1986, Digestion of the carbohydrates of banana (Musa para- disiaca sapientum) in the human small intestine, Am. J. Clin. Nutr. 44:42–50.

    CAS  Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1987, Digestion of polysaccharides of potato in the small intestine of man, Am. J. Clin. Nutr. 45:423–431.

    CAS  Google Scholar 

  • Englyst, H. N., and Cummings, J. H., 1988, Improved method for measurement of dietary fiber as the non-starch polysaccharides in plant foods, J. Assoc. Off. Anal. Chem. 71:808–814.

    CAS  Google Scholar 

  • Englyst, H. N., and Hudson, G. J., 1987, Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides. A comparison with gas-liquid chromatography, Food Chem. 24: 63–76.

    Article  CAS  Google Scholar 

  • Englyst, H., Wiggins, H. S., and Cummings, J. H., 1982, Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates, Analyst 107:307–318.

    Article  CAS  Google Scholar 

  • Englyst, H. N., Trowell, H. W., Southgate, D. A. T., and Cummings, J. H., 1987a, Dietary fiber and resistant starch, Am. J. Clin. Nutr. 46:873–874.

    CAS  Google Scholar 

  • Englyst, H. N., Cummings, J., and Wood, R., 1987b, Determination of dietary fibre in cereals and cereal products-collaborative trials. II. Study of a modified Englyst procedure, J. Assoc. Publ. Analysts 25:59–71.

    CAS  Google Scholar 

  • Englyst, H. N., Cummings, J. H., and Wood, R., 1987c, Determination of dietary fibre in cereals and cereal products-collaborative trials. III. Study of further simplified procedures, J. Assoc. Publ. Analysts 25:73–110.

    CAS  Google Scholar 

  • Fuwa, H., Takaya, T., and Sugimoto, Y., 1980, Degradation of various starch granules by amylases, in: Mechanisms of Saccharide Polymerization and Depolymerization (J. J. Marshall, ed.), Academic Press, New York, pp. 73–100.

    Google Scholar 

  • Gidley, M. J., 1987, Factors affecting the crystalline type (A-C) of native starches and model compounds: A rationalisation of observed effects in terms of polymorphic structures, Carbohydr. Res. 161:301–304.

    Article  CAS  Google Scholar 

  • Graham, H., Hesselman, K., and Aman, P., 1985, The effect of wheat bran, whole crop peas, and beet pulp on the digestibility of dietary components in a cereal-based pig feed, in: Proceedings of the 3rd International Seminar on Digestive Physiology in the Pig, Copenhagen. Report from the National Institute of Animal Science, Denmark (A. Just, H. Jorgensen, and J. A. Fernandez, eds.), National Institute of Animal Science, pp. 195–198.

    Google Scholar 

  • Heaton, K. W., Marcus, S. N., Emmett, P. M., and Bilton, C. H., 1988, Particle size of wheat, maize and oat test meals: Effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro, Am. J. Clin. Nutr. 47:675–682.

    CAS  Google Scholar 

  • Hermansen, K., Rasmussen, O., Arnfred, J., Winther, E., and Schmitz, O., 1986, Differential glycaemic effects of potato, rice and spaghetti in type 1 (insulin dependent) diabetic patients at constant insulinaemia, Diabetalogia 29:358–361.

    Article  CAS  Google Scholar 

  • Hizukuri, S., 1985, Relationship between the distribution of the chain length of amylopectin and the crystalline structure of starch granules, Carbohydr. Res. 141:295–306.

    Article  CAS  Google Scholar 

  • Holm, J., Björck, I., Ostrowska, S., Eliasson, A.-C., Asp, N. G., Larsson, K., and Lundquist, I., 1983, Digestibility of amylose-lipid complexes in-vitro and in-vivo, Starch/Stärke 35:294–297.

    Article  CAS  Google Scholar 

  • James, W. P. T., and Theander, O. (eds.), 1981, The Analysis of Dietary Fiber in Food, Marcel Dekker, New York, p. 259.

    Google Scholar 

  • Katz, J. R., 1934, X-ray investigation of gelatinization and retrogradation of starch and its importance for bread research, Bakers Weekly 81:34–37.

    CAS  Google Scholar 

  • Katz, J. R., 1937, The amorphous part of starch in fresh bread, and in fresh pastes and solutions of starch, Reel. Trav. Chim. Pays Bas 18:55–59.

    Google Scholar 

  • Millard, P., and Chesson, A., 1984, Modification to swede (Brassica napus L.) anterior to the terminal ileum of pigs: Some implications for the analysis of dietary fibre, Br. J. Nutr. 52:583–594.

    Article  CAS  Google Scholar 

  • Prosky, L., Asp, N.-G., Furda, I., Devries, J. W., Schweizer, T. F., and Harland, B. F., 1984, Determination of total dietary fiber in foods, food products and total diets: Interlaboratory study, J. Assoc. Off. Anal. Chem. 67:1044–1052.

    Google Scholar 

  • Ring, S. G., Colonna, P., I’Anson, K. J., Kalichevsky, M. T., Miles, M.-J., Morris, V. J., and Orford, P. D., 1987, The gelation and crystallisation of amylopectin, Carbohydr. Res. 162:277–293.

    Article  CAS  Google Scholar 

  • Shainkin, R., and Birk, Y., 1970, α-Amylase inhibitors from wheat. Isolation and characterization, Biochim. Biophys. Acta 221:502–513.

    CAS  Google Scholar 

  • Sterling, C., 1978, Textural qualities and molecular structure of starch products, J. Texture Stud. 9:225–255.

    Article  CAS  Google Scholar 

  • Trowell, H., Southgate, D. A. T., Wolever, T. M. S., Leeds, A. R., Gussell, M. A., and Jenkins, D. J. A., 1976, Dietary fiber redefined, Lancet 1:967.

    Article  CAS  Google Scholar 

  • Trowell, H., Burkitt, D., and Heaton, K., eds., 1985, Dietary Fibre, Fibre-Depleted Foods and Disease, Academic Press, London.

    Google Scholar 

  • Wolever, T. M. S., Jenkins, D. J. A., Kalmusky, J., Jenkins, A., Giordano, C., Giudici, S., Josse, R. G., and Wong, G. S., 1986, Comparison of regular and parboiled rices: Explanation of discrepancies between reported glycemic responses to rice, Nutr. Res. 6:349–357.

    Article  Google Scholar 

  • Wu, H.-C., and Sarko, A., 1978a, The double-helical molecular structure of crystalline B-amylose, Carbohydr. Res. 61:7–25.

    Article  CAS  Google Scholar 

  • Wu, H.-C., and Sarko, A., 1978b, The double-helical molecular structure of crystalline A-amylose, Carbohydr. Res. 61:27–40.

    Article  CAS  Google Scholar 

  • Wursch, P., Del Vedovo, S., and Koellreutter, B., 1986, Cell structure and starch nature as key determinants of the digestion rate of starch in legume, Am. J. Clin. Nutr. 43:25–29.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Plenum Press, New York

About this chapter

Cite this chapter

Englyst, H.N., Kingman, S.M. (1990). Dietary Fiber and Resistant Starch. In: Kritchevsky, D., Bonfield, C., Anderson, J.W. (eds) Dietary Fiber. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0519-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0519-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7846-7

  • Online ISBN: 978-1-4613-0519-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics