Skip to main content

Calcium Ions and the Regulation of Motility in Paramecium

  • Chapter
Book cover Ciliary and Flagellar Membranes

Abstract

Paramecium is a large unicell: of the most commonly studied species, P. tetraurelia can reach 150-200 µm in length, while P. caudatum may exceed 300 µm. The cell body of both species supports 5000-6000 cilia, which are individually covered by a membrane that collectively accounts for about half of the total cell surface area. The ciliary and somatic membranes are physically contiguous, but their biochemical compositions are quite distinct. How this segregation is achieved is an interesting problem in itself (for more details, the reader is referred to chapters in this volume by Bouck et al., Williams, Chailley et al., and Kaneshiro), but it ensures a functional specialization of the two surfaces. A primary role of the ciliary membrane is in providing a barrier between the locomotory apparatus of the cilium (the axoneme) and the external environment, but it is also involved in establishing physical contact between mating-competent cells. This cell agglutination reaction is discussed in some detail by Watanabe (this volume). Also, there is evidence to suggest that cilia may be sensitive to chemicals in the environment (Preston and Usherwood, 1988). However, it is perhaps in its role as an ion-selective filter that the ciliary membrane is most important to the day-to-day survival of the unicell.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adoutte, A., Ramanathan, R., Lewis, R.M., Dute, R.R., Ling, K.-Y, Kung, C., and Nelson, D.L., 1980, Biochemical studies of the excitable membrane of Paramecium tetraurelia. III. Proteins of cilia and ciliary membranes, J. Cell Biol. 84: 717–738.

    PubMed  CAS  Google Scholar 

  • Adoutte, A., Ling, K.-Y, Chang, S-Y., Huang, F., and Kung, C., 1983, Physiological and mutational protein variations in the ciliary membrane of Paramecium, Exp. Cell Res. 148:387–404.

    PubMed  CAS  Google Scholar 

  • Andrivon, C., Brugerolle, G., and Delachambre, D., 1983, A specific Ca2+ -ATPase in the ciliary membrane of Paramecium tetraurelia, Biol. Cell. 47:351–364.

    CAS  Google Scholar 

  • Bardele, C.F., 1981, Functional and phylogenetic aspects of the ciliary membrane: A comparative freezefracture study, BioSystems 14:403–421.

    PubMed  CAS  Google Scholar 

  • Berger, J.D., 1976, Gene expression and phenotypic change in Paramecium tetraurelia exconjugants, Genet. Res. 27:123–134.

    PubMed  CAS  Google Scholar 

  • Boheim, G., Hanke, W., Methfessel, C., Eibl, H., Kaupp, U.B., Maelicke, A., and Schultz, J.E., 1982, Membrane reconstitution below lipid phase transition temperature, in: Transport in Biomembranes: Model Systems and Reconstitution (R. Antolini, A. Gliozzi, and A. Gorio, eds.), Raven Press, New York, pp. 87–97.

    Google Scholar 

  • Bonini, N.M., 1987, Regulation of ciliary motility in Paramecium by cyclic AMP and cyclic GMP: Behavioral and biochemical studies, Ph. D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Bonini, N.M., and Nelson, D.L., 1988, Differential regulation of Paramecium ciliary motility by cAMP and cGMP, J. Cell Biol. 106:1615–1623.

    PubMed  CAS  Google Scholar 

  • Bonini, N.M., Gustin, M.C., and Nelson, D.L., 1986, Regulation of ciliary motility in Paramecium: A role for cyclic AMP, Cell Motil. Cytoskel. 6:256–272.

    CAS  Google Scholar 

  • Bonini, N.M., Evans, T.C., Miglietta, L.A.P., and Nelson, D.L., 1989, The regulation of ciliary motility in Paramecium by Ca2+ and cyclic nucleotides, Adv. Second Messenger Phosphoprotein Res. (in press).

    Google Scholar 

  • Brehm, P., and Eckert, R., 1978a, An electrophysiological study of the regulation of ciliary beating frequency in Paramecium, J. Physiol. (London) 283:557–568.

    CAS  Google Scholar 

  • Brehm, P., and Eckert, R., 1978b, Calcium entry leads to inactivation of calcium channel in Paramecium, Science 202:1203–1206.

    PubMed  CAS  Google Scholar 

  • Brehm, P., Eckert, R., and Tillotson, D., 1980, Calcium-mediated inactivation of calcium current in Paramecium, J. Physiol. (London) 306:193–203.

    CAS  Google Scholar 

  • Browning, J.L., and Nelson, D.L., 1976, Biochemical studies of the excitable membrane of Paramecium aurelia. I. 45Ca2+ fluxes across the resting and excited membrane. Biochim. Biophys. Acta 448:338–351.

    CAS  Google Scholar 

  • Brugerolle, G., Andrivon, C., and Bohatier, J., 1980, Isolation, protein pattern and enzymatic characterization of the ciliary membrane of Paramecium tetraurelia, Biol. Cell. 37:251–260.

    CAS  Google Scholar 

  • Byrne, B.J., and Byrne, B.C., 1978a, An ultrastructural correlate of the membrane mutant ’paranoiac’ in Paramecium, Science 199:1091–1093.

    PubMed  CAS  Google Scholar 

  • Byrne, B.J., and Byrne, B.C., 1978b, Behavior and the excitable membrane in Paramecium, Crit. Rev. Microbiol. 6:53–108.

    CAS  Google Scholar 

  • Byrne, B.J., Tanner, A.P., and Dietz, P.M., 1988, Phenotypic characterization of paranoiac and related mutants in Paramecium tetraurelia, Genetics 118:619–626.

    PubMed  CAS  Google Scholar 

  • Chad, J.E., Eckert, R., and Ewald, D., 1984, Kinetics of Ca-dependent inactivation of calcium current in neurones of Aplysia californica, J. Physiol. (London) 347:279–300.

    CAS  Google Scholar 

  • Chad, J., Kalman, D., and Armstrong, D., 1987, The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels, in: Cell Calcium and the Control of Membrane Transport (L.J. Mandel and D.C. Eaton, eds.), Rockefeller University Press, New York, pp. 153–186.

    Google Scholar 

  • Connolly, J.G., and Kerkut, G.A., 1981, The membrane potentials of Tetrahymena vorax, Comp. Biochem. Physiol. 69C:265–273.

    Google Scholar 

  • Connolly, J.G., and Kerkut, G.A., 1983, Ion regulation and membrane potential in Tetrahymena and Paramecium, Comp. Biochem. Physiol. 76A:1–16.

    CAS  Google Scholar 

  • Connolly, J.G., and Kerkut, G.A., 1984, An electrogenic component of the membrane potential of Tetrahymena, Comp. Biochem. Physiol. 77A:335–344.

    Google Scholar 

  • Doughty, M.J., 1978, Ciliary Ca2+-ATPase from the excitable membrane of Paramecium. Some properties and purification by affinity chromatography, Comp. Biochem. Physiol. 608:339–345.

    Google Scholar 

  • Doughty, M.J., and Kaneshiro, E.S., 1983, Divalent cation-dependent ATPase associated with cilia and other subcellular fractions of Paramecium. An electrophoretic characterization on Triton-polyacrylamide gels, J. Protozool. 30:565–573.

    CAS  Google Scholar 

  • Doughty, M.J., and Kaneshiro, E.S., 1985, Divalent cation-dependent ATPase activities in ciliary membranes and other surface structures in Paramecium tetraurelia: Comparative in vitro studies, Arch. Biochem. Biophys. 238:118–128.

    PubMed  CAS  Google Scholar 

  • Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol. (London) 271:119–133.

    CAS  Google Scholar 

  • Dute, R., and Kung, C., 1978, Ultrastructure of the proximal region of somatic cilia in Paramecium tetraurelia, J. Cell Biol. 78:451–464.

    PubMed  CAS  Google Scholar 

  • Eckert, R., and Brehm, P., 1979, Ionic mechanisms of excitation in Paramecium, Annu. Rev. Biophys. Bioeng. 8:353–383.

    PubMed  CAS  Google Scholar 

  • Eckert, R., and Chad, J.E., 1984, Inactivation of Ca channels, Prog. Biophys. Mol. Biol. 44:215–267.

    PubMed  CAS  Google Scholar 

  • Eckert, R., Tillotson, D.L., and Brehm, P., 1981, Calcium-mediated control of Ca and K currents, Fed. Proc. 40:2226–2232.

    PubMed  CAS  Google Scholar 

  • Ehrlich, B.E., Finkelstein, A., Forte, M., and Kung, C., 1984, Voltage-dependent calcium channels from Paramecium cilia incorporated into planar lipid bilayers, Science 225:427–428.

    PubMed  CAS  Google Scholar 

  • Ehrlich, B.E., Jacobson, A.R., Hinrichsen, R.D., Sayre, L.M., and Forte, M.A., 1988, Paramecium calcium channels are blocked by a family of calmodulin antagonists, Proc. Natl. Acad. Sci. USA 85:5718–5722.

    PubMed  CAS  Google Scholar 

  • Eisenbach, L., Ramanathan, R., and Nelson, D.L., 1983, Biochemical studies of the excitable membrane of Paramecium tetraurelia. IX. Antibodies against ciliary membrane proteins, J. Cell Biol. 97:1412–1420.

    PubMed  CAS  Google Scholar 

  • Eistetter, H., Seckler, B., Bryniok, D., and Schultz, J.E., 1983, Phosphorylation of endogenous proteins of cilia from Paramecium tetraurelia in vitro, Eur. J. Cell Biol. 31:220–226.

    PubMed  CAS  Google Scholar 

  • Evans, T.C., and Nelson, D.L., 1989, The cilia of Paramecium contain both Ca2+-dependent and Ca2+ -inhibitable calmodulin binding proteins, Biochem. J. 259:385–396.

    PubMed  CAS  Google Scholar 

  • Evans, T.C., Hennessey, T., and Nelson, D.L., 1987, Electrophysiological evidence suggests a defective Ca2+ control mechanism in a new Paramecium mutant, J. Membr. Biol. 98:275–283.

    PubMed  CAS  Google Scholar 

  • Fox, A.P., 1981, Voltage-dependent inactivation of a calcium channel, Proc. Natl. Acad. Sci. USA 78:953–956.

    PubMed  CAS  Google Scholar 

  • Gundersen, R.E., and Nelson, D.L., 1987, A novel Ca2+-dependent protein kinase from Paramecium tetraurelia, J. Biol. Chem. 262:4602–4609.

    PubMed  CAS  Google Scholar 

  • Gustin, M.C., and Nelson, D.L., 1987, Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium, Biochem. J. 246:337–345.

    PubMed  CAS  Google Scholar 

  • Haga, N., and Hiwatashi, K., 1982, A soluble gene product controlling membrane excitability in Paramecium, Cell Biol. Int. Rep. 6:295–300.

    PubMed  CAS  Google Scholar 

  • Haga, N., Forte, M., Saimi, Y., and Kung, C., 1982, Microinjection as a test of complementation in Paramecium, J. Cell Biol. 82:559–564.

    Google Scholar 

  • Haga, N., Saimi, Y., Takahashi, M., and Kung, C., 1983, Intra- and interspecific complementation of membrane inexcitable mutants of Paramecium, J. Cell Biol. 97:378–382.

    PubMed  CAS  Google Scholar 

  • Haga, N., Forte, M., Ramanathan, R., Hennessey, T., Takahashi, M., and Kung, C., 1984a, Characterization and purification of a soluble protein controlling Ca-channel activity in Paramecium, Cell 39:71–78.

    PubMed  CAS  Google Scholar 

  • Haga, N., Forte, M., Ramanathan, R., Saimi, Y., Takahashi, M., and Kung, C., 1984b, Purification of a soluble protein controlling Ca2+ channel activity in Paramecium, Biophys. J. 45:130–132.

    PubMed  CAS  Google Scholar 

  • Haga N., Forte, M., Saimi, Y. and Kung, C., 1984c, Characterization of cytoplasmic factors which complement Ca2+ channel mutations in Paramecium tetraurelia, J., Neurogenet. 1:259–274.

    CAS  Google Scholar 

  • Hamasaki, T., and Naitoh, Y., 1985, Localization of calcium-sensitive reversal mechanism in a cilium of Paramecium, Proc. Jpn. Acad. Ser. B 61:140–143.

    Google Scholar 

  • Hanke, W., Eibl, H., and Boheim, G., 1981, A new method for membrane reconstitution: Fusion of proteincontaining lipids with planar lipid bilayers below lipid phase transition temperature, Biophys. Struct. Mech. 7:131–137.

    PubMed  CAS  Google Scholar 

  • Hansma, H.G., and Kung, C., 1975, Studies of the cell surface of Paramecium, Biochem. J. 152:523–528.

    PubMed  CAS  Google Scholar 

  • Hennessey, T.M., 1987, A novel calcium current is activated by hyperpolarization in Paramecium tetraurelia, Soc. Neurosci. Abstr. 13:108.

    Google Scholar 

  • Hennessey, T.M., and Kung, C., 1984, An anticalmodulin drug, W-7, inhibits the voltage-dependent calcium current in Paramecium caudatum, J. Exp. Biol. 110:169–181.

    PubMed  CAS  Google Scholar 

  • Hennessey, T.M., and Kung, C., 1985, Slow inactivation of the calcium current of Paramecium is dependent on voltage and not internal calcium, J. Physiol. (London) 365:165–179.

    CAS  Google Scholar 

  • Hennessey, T.M., Machemer, H., and Nelson, D.L., 1985, Injected cyclic AMP increases ciliary beat frequency in conjunction with membrane hyperpolarization, Eur. J. Cell Biol. 36:153–156.

    PubMed  CAS  Google Scholar 

  • Hinrichsen, R.D., and Kung, C., 1984, Genetic analysis of axonemal mutants in Paramecium tetraurelia defective in their response to calcium, Genet. Res. 43:11–20.

    Google Scholar 

  • Hinrichsen, R.D., and Saimi, Y., 1984, A mutation that alters properties of the calcium channel in Paramecium tetraurelia, J. Physiol. (London) 351:397–410.

    CAS  Google Scholar 

  • Hinrichsen, R.D., Saimi, Y., Hennessey, T., and Kung, C., 1984a, Mutants in Paramecium tetraurelia defective in their axonemal response to calcium, Cell Motil. 4:283–295.

    PubMed  CAS  Google Scholar 

  • Hinrichsen, R.D., Saimi, Y., and Kung, C., 1984b, Mutants with altered Ca2+ -channel properties in Paramecium tetraurelia: Isolation, characterization and genetic analysis, Genetics 108:545–558.

    PubMed  CAS  Google Scholar 

  • Hirano, J., and Watanabe, Y., 1985, Studies on calmodulin-binding proteins (CaMBPs) in the cilia of Tetrahymena, Exp. Cell Res. 157:441–450.

    PubMed  CAS  Google Scholar 

  • Hiwatashi, K., Haga, N., and Takahashi, M., 1980, Restoration of membrane excitability in a behavioral mutant of Paramecium caudatum during conjugation and by microinjection of wild-type cytoplasm, J. Cell Biol. 84:476–480.

    PubMed  CAS  Google Scholar 

  • Hockberger, P.E., and Swandulla, D., 1987, Direct ion channel gating: A new function for intracellular messengers, Cell. Mol. Neurobiol. 7:229–236.

    PubMed  CAS  Google Scholar 

  • Izumi, A., and Nakaoka, Y., 1987, cAMP-mediated inhibitory effect of calmodulin antagonists on ciliary reversal of Paramecium, Cell Motil. Cytoskel. 7:154–159.

    CAS  Google Scholar 

  • Jennings, H.S., 1906, Behavior of the Lower Organisms, Columbia University Press, New York.

    Google Scholar 

  • Kass, R.S., and Scheuer, T., 1982, Slow inactivation of calcium channels in the cardiac Purkinje fiber, J. Mol. Cell. Cardiol. 14:615–618.

    PubMed  CAS  Google Scholar 

  • Klumpp, S., and Schultz, J.E., 1982, Characterization of a Ca2+-dependent guanylate cyclase in the excitable ciliary membrane from Paramecium, Eur. J. Biochem. 124:317–324.

    PubMed  CAS  Google Scholar 

  • Klumpp, S., Kleefeld, G., and Schultz, J.E., 1983a, Calcium/calmodulin-regulated guanylate cyclase of the excitable ciliary membrane from Paramecium. Dissociation of calmodulin by La3+: Calmodulin specificity and properties of the reconstituted guanylate cyclase, J. Biol. Chem. 248:12455–12459.

    Google Scholar 

  • Klumpp, S., Steiner, A.L., and Schultz, J.E., 1983b, Immunocytochemical localization of cyclic GMP, cGMP-dependent protein kinase, calmodulin and calcineurin in Paramecium tetraurelia, Eur. J. Cell Biol. 32:164–170.

    PubMed  CAS  Google Scholar 

  • Klumpp, S., Gierlich, D., and Schultz, J.E., 1984, Adenylate cyclase and guanylate cyclase in the excitable ciliary membrane from Paramecium: Separation and regulation, FEBS Lett. 171:95–99.

    CAS  Google Scholar 

  • Kopf, G.S., Woolkaiis, M.J., and Gerton, G.L., 1986, Evidence for a guanine nucleotide-binding regulatory protein in invertebrate and mammalian sperm, J. Biol. Chem. 261:7327–7331.

    PubMed  CAS  Google Scholar 

  • Kudo, S., Muto, Y., and Nozawa, Y., 1985, Regulation by calcium of hormone-insensitive adenylate cyclase and calmodulin-dependent guanylate cyclase in Tetrahymena plasma membrane, Comp. Biochem. Physiol. 808:813–816.

    Google Scholar 

  • Kudo, S., Nagao, S., Muto, Y., Takahashi, M., and Nozawa, Y., 1986, Characterization of cyclic AMP and cyclic GMP phosphodiesterases in Tetrahymena cilia, Comp. Biochem. Physiol. 838:99–102.

    Google Scholar 

  • Kung, C., 1971a, Genie mutants with altered system of excitation in Paramecium aurelia. I. Phenotypes of the behavioral mutants, Z. Vgl. Physiol. 71:142–164.

    Google Scholar 

  • Kung, C., 1971b, Genie mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants, Genetics 69:29–45.

    PubMed  CAS  Google Scholar 

  • Kung, C., 1979, Biology and genetics of Paramecium behavior, in: Neurogenetics: Genetic Approaches to the Nervous System (X.O. Breakefield, ed.), Elsevier, Amsterdam, pp. 1–26.

    Google Scholar 

  • Kung, C., and Saimi, Y., 1982, The physiological basis of taxes in Paramecium, Annu. Rev. Physiol. 44:519–534.

    PubMed  CAS  Google Scholar 

  • Kung, C., Chang, S.-Y., Satow, Y., Van Houten, J., and Hansma, H., 1975, Genetic dissection of behavior in Paramecium, Science 188:898–904.

    PubMed  CAS  Google Scholar 

  • Levitan, I.B., 1988, Modulation of ion channels in neurons and other cells, Annu. Rev. Neurosci. 11:119–136.

    PubMed  CAS  Google Scholar 

  • Lewis, R.M., and Nelson, D.L., 1980, Biochemical studies of the excitable membrane of Paramecium. IV. Protein kinase activities of cilia and ciliary membrane, Biochim. Biophys. Acta 615:341–353.

    PubMed  CAS  Google Scholar 

  • Lewis, R.M., and Nelson, D.L., 1981, Biochemical studies of the excitable membrane of Paramecium tetraurelia. VI. Endogenous protein substrates for in vitro and in vivo phosphorylation in cilia and ciliary membranes, J. Cell Biol. 91:167–174.

    PubMed  CAS  Google Scholar 

  • Lieberman, S.J., Hamasaki, T., and Satir, P., 1988, Ultrastructure and motion analysis of permeabilized Paramecium capable of motility and regulation of motility, Cell Motil. Cytoskel. 9:73–84.

    CAS  Google Scholar 

  • Machemer, H., 1974, Frequency and directional responses of cilia to membrane potential changes in Paramecium, J. Comp. Physiol. 92:293–316.

    Google Scholar 

  • Machemer, H., 1988, Electrophysiology, in: Paramecium (H.-D. Görtz, ed.), Springer-Verlag, Berlin, pp. 185–215.

    Google Scholar 

  • Machemer, H., and Deitmer, J.W., 1987, From structure to behaviour: Stylonychia as a model system for cellular physiology, Prog. Protistol. 2:213–330.

    Google Scholar 

  • Machemer, H., and Eckert, R., 1973, Electrophysiological control of reversed ciliary beating in Paramecium, J. Gen. Physiol. 61:572–587.

    PubMed  CAS  Google Scholar 

  • Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol. (London) 296:49–60.

    CAS  Google Scholar 

  • Maihle, N.J., Dedman, J.R., Means, A.R., Chafouleas, J.G., and Satir, B.H., 1981, Presence and indirect immunofluorescent localization of calmodulin in Paramecium tetraurelia, J. Cell Biol. 89:695–699.

    PubMed  CAS  Google Scholar 

  • Majima, T., Hamasaki, T., and Arai, T., 1986, Increase in cellular cyclic GMP level by potassium stimulation and its relation to ciliary orientation in Paramecium, Experientia 42:62–64.

    CAS  Google Scholar 

  • Martinac, B., and Hildebrand, E., 1981, Electrically induced Ca2+ transport across the membrane of Paramecium caudatum measured by means of flow-through technique, Biochim. Biophys. Acta 649:244–252.

    PubMed  CAS  Google Scholar 

  • Martinac, B., Saimi, Y., Gustin, M.C., and Kung, C., 1986, Single-channel recording in Paramecium, Biophys. J. 49:167a.

    Google Scholar 

  • Martinac, B., Saimi, Y., Gustin, M.C., and Kung, C., 1988, Ion channels of three microbes: Paramecium, yeast and Escherichia coli, in: Calcium and Ion Channel Modulation (A.D. Grinnell, D. Armstrong, and M.B. Jackson, eds.), Plenum Press, New York, pp. 415–430.

    Google Scholar 

  • Mason, P.A., 1987, Purification and properties of the cyclic AMP-dependent protein kinases of Paramecium tetraurelia, Ph.D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Merkel, S.J., Kaneshiro, E.S., and Gruenstein, E.I., 1981, Characterization of the cilia and ciliary membrane proteins of wild-type Paramecium tetraurelia and a pawn mutant, J. Cell Biol. 89:206–215.

    PubMed  CAS  Google Scholar 

  • Miglietta, L.A.P., and Nelson, D.L., 1988, A novel cGMP-dependent protein kinase from Paramecium, J. Biol. Chem. 263:16096–16105.

    PubMed  CAS  Google Scholar 

  • Momayezi, M., Kersken, H., Gras, U., Vilmart-Seuwen, J., and Plattner, H., 1986, Calmodulin in Paramecium tetraurelia: Localization from the in vivo to the ultrastructural level, J. Histochem. Cytochem. 34:1621–1638.

    PubMed  CAS  Google Scholar 

  • Moss, A.G., and Tamm, S.L., 1987, A calcium regenerative potential controlling ciliary reversal is propagated along the length of ctenophore comb plates, Proc. Natl. Acad. Sci. USA 84:6476–6480.

    PubMed  CAS  Google Scholar 

  • Murofushi, H., 1973, Purification and characterization of a protein kinase in Tetrahymena cilia, Biochim. Biophys. Acta 327:354–364.

    PubMed  CAS  Google Scholar 

  • Murofushi, H., 1974, Protein kinases in Tetrahymena cilia. II. Partial purification and characterization of adenosine 3’,5’-monophosphate-dependent and guanosine 3’,5’-monophosphate-dependent protein kinases, Biochim. Biophys. Acta 370:130–139.

    PubMed  CAS  Google Scholar 

  • Naitoh, Y., 1974, Bioelectric basis of behavior ir protozoa, Am. Zool. 14:883–893.

    CAS  Google Scholar 

  • Naitoh, Y., and Eckert, R., 1973, Sensory mechanisms in Paramecium. II. Ionic basis of the hyperpolarizing mechanoreceptor potential, J. Exp. Biol. 59:53–65.

    CAS  Google Scholar 

  • Naitoh, Y., and Kaneko, H., 1972, ATP-Mg2+ reactivated Triton-extracted models of Paramecium: Modification of ciliary movement by calcium ions, Science 176:523–524.

    CAS  Google Scholar 

  • Naitoh, Y., and Kaneko, H., 1973, Control of ciliary activities by adenosine triphosphate and divalent cations in Triton-extracted models of Paramecium caudatum, J. Exp. Biol. 58:657–676.

    CAS  Google Scholar 

  • Nakaoka, Y., and Ooi, H., 1985, Regulation of ciliary reversal in Triton-extracted Paramecium by calcium and cyclic adenosine monophosphate, J. Cell Sci. 77:185–195.

    PubMed  CAS  Google Scholar 

  • Nakaoka, Y., Oka, T., Serizawa, K., Toyotama, H., and Oosawa, F., 1983, Acceleration of Paramecium swimming velocity is effected by various cations, Cell Struct. Funct. 8:77–84.

    CAS  Google Scholar 

  • Neer, E.J., and Clapham, D.E., 1988, Roles of G protein subunits in transmembrane signalling, Nature 333: 129–134.

    PubMed  CAS  Google Scholar 

  • Nock, A.H., Kretschmar, M., Lipps, H.-J., and Schultz, J.E., 1982, Restoration of membrane excitability by microinjection of cytoplasmic wild-type RNA into Paramecium tetraurelia pawn C mutants, FEMS Microbiol. Lett. 13:275–277.

    CAS  Google Scholar 

  • Oertel, D., Schein, S.J., and Kung, C., 1977, Separation of membrane currents using a Paramecium mutant, Nature 268:120–124.

    PubMed  CAS  Google Scholar 

  • Oertel, D., Schein, S.J., and Kung, C., 1978, A potassium conductance activated by hyperpolarization in Paramecium, J. Membr. Biol. 43:169–185.

    PubMed  CAS  Google Scholar 

  • Ogura, A., and Takahashi, K., 1976, Artificial deciliation causes loss of calcium dependent responses in Paramecium, Nature 264:170–172.

    PubMed  CAS  Google Scholar 

  • Ohnishi, K., and Watanabe, Y., 1983, Purification and some properties of a new Ca2+ binding protein (TCBP-10) present in Tetrahymena cilium, J. Biol. Chem. 258:13978–13985.

    PubMed  CAS  Google Scholar 

  • Ohnishi, K., Suzuki, Y., and Watanabe, Y., 1982, Studies on calmodulin isolated from Tetrahymena cilia and its localization within the cilium, Exp. Cell Res. 137:217–227.

    PubMed  CAS  Google Scholar 

  • Onimaru, H., Ohki, K., Nozawa, Y., and Naitoh, Y., 1980, Electrical properties of Tetrahymena, a suitable tool for studies of membrane excitation, Proc. Jpn. Acad. Ser. B 56:538–543.

    CAS  Google Scholar 

  • Oosawa, Y., and Sokabe, M., 1985, Cation channels from Tetrahymena cilia incorporated into planar lipid bilayers, Am. J. Physiol. 249:C177–C179.

    PubMed  CAS  Google Scholar 

  • Oosawa, Y., Sokabe, M., and Kasai, M., 1988, A cation channel for K + and Ca2+ from Tetrahymena cilia in planar lipid bilayers, Cell Struct. Funct. 13:51–60.

    PubMed  CAS  Google Scholar 

  • Otter, T., Satir, B.H., and Satir, P., 1984, Trifluoperazine-induced changes in swimming behavior of Paramecium: Evidence for two sites of drug action, Cell Motil. 4:249–267.

    PubMed  CAS  Google Scholar 

  • Plattner, H., 1975, Ciliary granule plaques: Membrane-intercalated particle aggregates associated with Ca2+ -binding-sites in Paramecium, J. Cell Sci. 18:257–269.

    PubMed  CAS  Google Scholar 

  • Preer, J.R., Jr., 1986, Surface antigens of Paramecium, in: The Molecular Biology of Ciliated Protozoa (J.G. Gall, ed.), Academic Press, New York, pp. 301–339.

    Google Scholar 

  • Preston, R.R., and Newman, T.M., 1986, Rectilinear particle arrays in freeze-fracture replicas of the surface membrane of Paramecium tetraurelia, J. Cell Sci. 83:269–291.

    PubMed  CAS  Google Scholar 

  • Preston, R.R., and Usherwood, P.N.R., 1988, Characterization of a specific L-[3H]glutamic acid binding site on cilia isolated from Paramecium tetraurelia, J. Comp. Physiol. B 158:345–352.

    CAS  Google Scholar 

  • Ramanathan, R., Adoutte, A., and Dute, R.R., 1981, Biochemical studies of the excitable membrane of Paramecium tetraurelia. V. Effects of proteases on the ciliary membrane, Biochim. Biophys. Acta 641: 349–365.

    PubMed  CAS  Google Scholar 

  • Ramanathan, R., Saimi, Y., Peterson, J.B., Nelson, D.L., and Kung, C., 1983, Antibodies to the ciliary membrane of Paramecium tetraurelia alter membrane excitability, J. Cell Biol. 97:1421–1428.

    PubMed  CAS  Google Scholar 

  • Rasmussen, H., and Barrett, P.Q., 1984, Calcium messenger system: An integrated view, Physiol. Rev. 64: 938–983.

    PubMed  CAS  Google Scholar 

  • Rauh, J.J., and Nelson, D.L., 1981, Calmodulin is a major component of extruded trichocysts from Paramecium tetraurelia, J. Cell Biol. 91:860–865.

    PubMed  CAS  Google Scholar 

  • Richard, E.A., Saimi, Y., and Kung, C., 1986, A mutation that increases a novel calcium-activated potassium conductance of Paramecium tetraurelia, J. Membr. Biol. 91:173–181.

    PubMed  CAS  Google Scholar 

  • Riddle, L.M., Rauh, J.J., and Nelson, D.L., 1982, A Ca2+-activated ATPase specifically released by Ca2+ shock from Paramecium tetraurelia, Biochim. Biophys. Acta 688:525–540.

    PubMed  CAS  Google Scholar 

  • Rossie, S., and Catterall, W.A., 1987, Regulation of ionic channels, in: The Enzymes, 3rd ed., Volume 18B (R.D. Boyer and E.G. Krebs, eds.), Academic Press, New York, pp. 335–358.

    Google Scholar 

  • Saimi, Y., 1986, Calcium-dependent sodium currents in Paramecium: Mutational manipulations and effects of hyper- and depolarization, J. Membr. Biol. 92:227–236.

    CAS  Google Scholar 

  • Saimi, Y., and Kung, C., 1982, Are ions involved in the gating of calcium channels? Science 218:153–156.

    PubMed  CAS  Google Scholar 

  • Saimi, Y., and Kung, C., 1987, Behavioral genetics of Paramecium, Annu. Rev. Genet. 21:47–65.

    PubMed  CAS  Google Scholar 

  • Saimi, Y., and Martinac, B., 1989, A calcium-activated potassium channel in Paramecium studied under patch clamp, J. Membr. Biol, (in press).

    Google Scholar 

  • Satow, Y., and Kung, C., 1980, Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia, J. Exp. Biol. 84:57–72.

    PubMed  CAS  Google Scholar 

  • Satow, Y., Chang, S.-Y., and Kung, C., 1974, Membrane excitability: Made temperature dependent by mutations, Proc. Natl. Acad. Sci. USA 71:2703–2706.

    PubMed  CAS  Google Scholar 

  • Schaefer, W.H., Lukas, T.J., Blair, I.A., Schultz, J.E., and Watterson, D.M., 1987, Amino acid sequence of a novel calmodulin from Paramecium tetraurelia that contains dimethyllysine in the first domain, J. Biol. Chem. 262:1025–1029.

    PubMed  CAS  Google Scholar 

  • Schein, S.J., 1976a, Calcium channel stability measured by gradual loss of excitability in pawn mutants of Paramecium aurelia, J. Exp. Biol. 65:725–736.

    PubMed  CAS  Google Scholar 

  • Schein, S.J., 1976b, Non-behavioral selection for pawns, mutants of Paramecium aurelia with decreased excitability, Genetics 84:453–468.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., and Jantzen, H.M., 1980, Cyclic nucleotide-dependent protein kinases from cilia of Paramecium tetraurelia, FEBS Lett. 116:75–78.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., and Klumpp, S., 1980, Guanylate cyclase in the excitable ciliary membrane of Paramecium, FEBS Lett. 122:64–66.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., and Klumpp, S., 1982, Lanthanum dissociates calmodulin from the guanylate cyclase of the excitable ciliary membrane from Paramecium, FEMS Microbiol. Lett. 13:303–306.

    CAS  Google Scholar 

  • Schultz, J.E., and Klumpp, S., 1983, Adenylate cyclase in cilia from Paramecium. Localization and partial characterization, FEBS Lett. 154:347–350.

    CAS  Google Scholar 

  • Schultz, J.E., and Klumpp, S., 1984, Calcium/calmodulin-regulated guanylate cyclases in the ciliary membranes from Paramecium and Tetrahymena, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17:275–283.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., Schonefeld, U., and Klumpp, S., 1983, Calcium/calmodulin-regulated guanylate cyclase and calcium-permeability in the ciliary membrane from Tetrahymena, Eur. J. Biochem. 137:89–94.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., Boheim, G., Gierlich, D., Hanke, W., Von Hirschhausen, R., Kleefeld, G., Klumpp, S., Otto, M.K., and Schönefeld, U., 1984a, Cyclic nucleotides and calcium in Paramecium: A neurobiological model organism, Horm. Cell Regul. 8:99–114.

    CAS  Google Scholar 

  • Schultz, J.E., Grunemund, R., Von Hirschhausen, R., and Schönefeld, U., 1984b, Ionic regulation of cyclic AMP levels in Paramecium tetraurelia in vivo, FEBS Lett. 167:113–116.

    PubMed  CAS  Google Scholar 

  • Schultz, J.E., Klumpp, S., and Gierlich, D., 1985, Involvement of cyclic nucleotides in sensing and response in Paramecium tetraurelia, in: Sensing and Response in Microorganisms (M. Eisenbach and M. Balaban, eds.), Elsevier, Amsterdam, pp. 159–173.

    Google Scholar 

  • Schultz, J.E., Pohl, T., and Klumpp, S., 1986, Voltage-gated Ca2+ entry into Paramecium linked to intraciliary increase in cyclic GMP, Nature 322:271–273.

    CAS  Google Scholar 

  • Schultz, J.E., Uhl, D.G., and Klumpp, S., 1987, Ionic regulation of adenylate cyclase from the cilia of Paramecium tetraurelia, Biochem. J. 246:187–192.

    PubMed  CAS  Google Scholar 

  • Schwartz, J.H., and Greenberg, S.M., 1987, Molecular mechanisms for memory. Second messenger modifications of protein kinases in nerve cells, Annu. Rev. Neurosci. 10:459–476.

    PubMed  CAS  Google Scholar 

  • Shusterman, C.L., 1981, Potassium resistant mutants and adaptation in Paramecium tetraurelia, Ph.D. dissertation, University of Wisconsin, Madison.

    Google Scholar 

  • Stoclet, J.-C., Gerard, D., Kilhoffer, M.-C., Lugnier, C., Miller, R., and Schaeffer, P., 1987, Calmodulin and its role in intracellular calcium regulation, Prog. Neurobiol. 29:321–364.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., 1979, Behavioral mutants in Paramecium caudatum, Genetics 91:393–408.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., 1988, Behavioral genetics in P. caudatum, in: Paramecium (H.-D. Görtz, ed.), Springer-Verlag, Berlin, pp. 271–281.

    Google Scholar 

  • Takahashi, M., and Naitoh, Y., 1978, Behavioral mutants of Paramecium caudatum with defective membrane electrogenesis, Nature 271:656–659.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Haga, N., Hennessey, T., Hinrichsen, R.D., and Hara, R., 1985, A gamma ray-induced nonexcitable membrane mutant in Paramecium caudatum: A behavioral and genetic analysis, Genet. Res. 46: 1–10.

    PubMed  CAS  Google Scholar 

  • Thiele, J., and Schultz, J.E., 1981, Ciliary membrane vesicles of Paramecium contain the voltage-sensitive calcium channel, Proc. Natl. Acad. Sci. USA 78:3688–3691.

    PubMed  CAS  Google Scholar 

  • Thiele, J., Klumpp, S., Schultz, J.E., and Bardele, C.F., 1982, Differential distribution of voltage-dependent calcium channels and guanylate cyclase in the excitable membrane of Paramecium tetraurelia, Eur. J. Cell Biol. 28:3–11.

    PubMed  CAS  Google Scholar 

  • Thiele, J., Otto, M.K., Deitmer, J.W., and Schultz, J.E., 1983, Calcium channels of the excitable ciliary membrane from Paramecium: An initial biochemical characterization, J. Membr. Biol. 76:253–260.

    Google Scholar 

  • Travis, S.M., and Nelson, D.L., 1986, Characterization of Ca2+- or Mg2+-ATPase of the excitable ciliary membrane from Paramecium tetraurelia: A comparison with a soluble Ca2+ -dependent ATPase, Biochim. Biophys. Acta 862:39–48.

    PubMed  CAS  Google Scholar 

  • Travis, S.M., and Nelson, D.L., 1988, Purification and properties of dyneins from Paramecium cilia, Biochim. Biophys. Acta 966:73–83.

    PubMed  CAS  Google Scholar 

  • Van Houten, J., and Van Houten, J., 1982, Computer simulation of Paramecium chemokinesis behavior, J. Theor. Biol. 98:453–468.

    Google Scholar 

  • Walter, M.F., and Schultz, J.E., 1981, Calcium receptor protein calmodulin isolated from cilia and cells of Paramecium tetraurelia, Eur. J. Cell Biol. 24:97–100.

    PubMed  CAS  Google Scholar 

  • Wyroba, E., and Przelecka, A., 1973, Studies on the surface coat of Paramecium aurelia. I. Ruthenium red staining and enzyme treatment, Z. Zellforsch. Mikrosk. Anat. 143:343–353.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preston, R.R., Saimi, Y. (1990). Calcium Ions and the Regulation of Motility in Paramecium . In: Bloodgood, R.A. (eds) Ciliary and Flagellar Membranes. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0515-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0515-6_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7845-0

  • Online ISBN: 978-1-4613-0515-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics