Advertisement

The Photoreceptor Connecting Cilium A Model for the Transition Zone

A Model for the Transition Zone
  • Joseph C. Besharse
  • Cynthia J. Horst

Abstract

Vertebrate photoreceptors provide an excellent system for investigating the organization and maintenance of the membrane domains and cell polarity necessary for sensory function. In particular, the connecting cilium of photoreceptors appears to play an important role in photoreceptor organization. This specialized region corresponds structurally to the transition zone of motile cilia. As a consequence, studies of the structure and function of the photoreceptor connecting cilium are likely to provide insight into the function of the transition zone of motile and sensory cilia found more generally in eukaryotic cells. The purpose of this chapter is to review our current understanding of both the structure and function of the photoreceptor connecting cilium with emphasis on features that it may share with other cilia. The principal focus of recent research is on the role of the connecting cilium in the generation and maintenance of the polarized structure of photoreceptors. Details of the many recent advances in photoreceptor development, molecular biology, transduction, and membrane turnover are beyond the scope of this chapter, but are discussed in a series of recent reviews (Papermaster and Schneider, 1982; Bok, 1985; Besharse, 1982, 1986; Besharse et al., 1988; Liebman, 1987; Applebury and Hargrave, 1986; Adler, 1986).

Keywords

Outer Segment Retinal Photoreceptor Ciliary Membrane Doublet Microtubule Vertebrate Photoreceptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, R., 1986, The differentiation of retinal photoreceptors and neurons in vitro, Prog. Retin. Res. 6:1–27.CrossRefGoogle Scholar
  2. Anderson, R.E., Maude, M.B., Kelleher, P.A., and Basinger, S.F., 1980a, Metabolism of phosphatidylcholine in the frog retina, Biochim. Biophys. Acta 620:212–226.PubMedGoogle Scholar
  3. Anderson, R.E., Kelleher, P.A., and Maude, M.B., 1980b, Metabolism of phosphatidylethanolamine in the frog retina, Biochim. Biophys. Acta 620:227–235.PubMedGoogle Scholar
  4. Anderson, R.E., Maude, M.B., and Kelleher, P.A., 1980c, Metabolism of phosphatidylethanolamine in the frog retina, Biochim. Biophys. Acta 620:236–246.PubMedGoogle Scholar
  5. Anderson, R.G.W., 1974, Isolation of ciliated or unciliated basal bodies from rabbit oviduct, J. Cell Biol. 60: 393–404.PubMedCrossRefGoogle Scholar
  6. Andrews, L.D., 1982, Freeze-fracture studies of vertebrate photoreceptor membranes, in: The Structure of the Eye (J.G. Hollyfield, ed.), Elsevier, Amsterdam, pp. 11–23.Google Scholar
  7. Applebury, M.L., and Hargrave, P.A., 1986, Molecular biology of the visual pigments, Vision Res. 26:1881–1895.PubMedCrossRefGoogle Scholar
  8. Araki, M., 1984, Immunocytochemical study on photoreceptor cell differentiation in the cultured retina of the chick, Dev. Biol. 103:313–318.PubMedCrossRefGoogle Scholar
  9. Bardele, C.F., 1983, Mapping of highly ordered membrane domains in the plasma membrane of the ciliate Cyclidium glaucoma, J. Cell Sci. 61:1–30.PubMedGoogle Scholar
  10. Basinger, S., and Hoffman, R., 1976, Phosphatidylcholine metabolism in the frog rod photoreceptor, Exp. Eye Res. 23:117–126.PubMedCrossRefGoogle Scholar
  11. Basinger, S., Bok, D., and Hall, M., 1976, Rhodopsin in the rod outer segment plasma membrane, J. Cell Biol. 69:29–42.PubMedCrossRefGoogle Scholar
  12. Bell, C.W., 1983, The molecular weight of dynein heavy chains, J. Submicrosc. Cytol. 15:201–202.Google Scholar
  13. Bert, R.J., 1987, Colchicine’s effects on the light-sensitive conductance in toad rods are due to inhibition of sodium-calcium exchange, Invest. Ophthalmol. Vis. Sci. Abstr. Suppl. 28:353.Google Scholar
  14. Besharse, J.C., 1982, The daily light-dark cycle and rhythmic metabolism in the photoreceptor-pigment epithelial complex, Prog. Retin. Res. 1:81–124.CrossRefGoogle Scholar
  15. Besharse, J.C., 1986, Photosensitive membrane turnover: Differentiated membrane domains and cell-cell interaction, in: The Retina: A Model for Cell Biological Studies, Part I (R. Adler and D. Farber, eds.), Academic Press, New York, pp. 297–352.Google Scholar
  16. Besharse, J.C., and Dunis, D.A., 1982, Rod photoreceptor disc shedding in vitro: Inhibition by cytochalasins and activation by colchicine, in: The Structure of the Eye (J.G. Hollyfield, ed.), Elsevier/North-Holland, Amsterdam, pp. 85–96.Google Scholar
  17. Besharse, J.C., and Pfenninger, K.H., 1980, Membrane assembly in retinal photoreceptors. I. Freeze-fracture analysis of cytoplasmic vesicles in relationship to disc assembly, J. Cell Biol. 87:451–463.PubMedCrossRefGoogle Scholar
  18. Besharse, J.C., Hollyfield, J.G., and Rayborn, M.E., 1977, Turnover of rod photoreceptor outer segments. II. Membrane addition and loss in relationships to light, J. Cell Biol. 75:507–527.PubMedCrossRefGoogle Scholar
  19. Besharse, J.C., Forestner, D.M., and Defoe, D.M., 1985, Membrane assembly in retinal photoreceptors. III. Distinct membrane domains of the connecting cilium of developing rods, J. Neurosci. 5:1035–1048.PubMedGoogle Scholar
  20. Besharse, J.C., Iuvone, P.M., and Pierce, M.E., 1988, Regulation of rhythmic photoreceptor metabolism: A role for post-receptoral neurons, Prog. Retin. Res. 7:21–61.CrossRefGoogle Scholar
  21. Biernbaum, M.S., and Bownds, M.D., 1985, Frog rod outer segments with attached inner segments ellipsoids as an in vitro model for photoreceptors on the retina, J. Gen. Physiol. 85:83–105.PubMedCrossRefGoogle Scholar
  22. Blanks, J.C., and Johnson, L.V., 1984, Specific binding of peanut lectin to a class of retinal photoreceptor cells. A species comparison, Invest. Ophthalmol. Vis. Sci. 25:546–555.Google Scholar
  23. Bok, D., 1985, Retinal photoreceptor-pigment epithelium interactions, Invest. Ophthalmol. Vis. Sci. 26:1659–1694.PubMedGoogle Scholar
  24. Bok, D., and Young, R.W., 1972, The renewal of diffusely distributed protein in the outer segments of rods and cones, Vision Res. 12:161–168.PubMedCrossRefGoogle Scholar
  25. Brann, M.R., and Cohen, L.V., 1987, Diurnal expression of transducin mRNA and translocation of transducin in rods of rat retina, Science 235:585–587.PubMedCrossRefGoogle Scholar
  26. Bridges, C.D.B., and Fong, S.L., 1980, Lectins as probes of glycoprotein and glycolipid oligosaccharides in rods and cones, in: Neurochemistry of the Retina (N.G. Bazan and R.N. Lolley, eds.), Pergamon Press, Elmsford, N.Y., pp. 255–267.Google Scholar
  27. Broekhuyse, R.M., Tolhuizen, E.F.J., Janssen, A.P.M., and Winkens, H.J., 1985, Light induced shift and binding of S-antigen in retinal rods, Curr. Eye Res. 4:613–618.PubMedCrossRefGoogle Scholar
  28. Brown, P.K., Gibbons, I.R., and Wald, G., 1963, The visual cells and visual pigment of the mudpuppy, Necturus, J. Cell Biol. 19:79–106.CrossRefGoogle Scholar
  29. Chaitin, M.H., and Bok, D., 1986, Immunoferritin localization of actin in retinal photoreceptors, Invest. Ophthalmol. Vis. Sci. 27:1764–1767.PubMedGoogle Scholar
  30. Chaitin, M.H., Schneider, B.G., Hall, M.O., and Papermaster, D.S., 1984, Actin in the photoreceptor connecting cilium: Immunocytochemical localization to the site of outer segment disk formation, J. Cell Biol. 99:239–247.PubMedCrossRefGoogle Scholar
  31. Cohen, D., and Nir, I., 1987, Cytochemical characterization of sialoglycoconjugates on rat photoreceptor cell surface, Invest. Ophthalmol. Vis. Sci. 28:640–645.PubMedGoogle Scholar
  32. Corless, J.M., and Fetter, R.D., 1987, Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: III. Implications of the terminal loop complex for disk morphogenesis, membrane fusion, and cell surface interactions, J. Comp. Neurol. 257:24–38.PubMedCrossRefGoogle Scholar
  33. Corless, J.M., Fetter, R.D., and Costello, M.J., 1987a, Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: I. Organization of lipid components, J. Comp. Neurol. 257:1–8.PubMedCrossRefGoogle Scholar
  34. C orless, J.M., Fetter, R.D., Zampighi, O.B., Costello, M.J., and Wall-Buford, D.L., 1987b, Structural features of the terminal loop region of frog retinal rod outer segment disk membranes: II. Organization of the terminal loop complex, J. Comp. Neurol. 257:9–23.PubMedCrossRefGoogle Scholar
  35. Defoe, D.M., and Besharse, J.C., 1985, Membrane assembly in retinal photoreceptors. II. Immunocytochemical analysis of freeze-fractured rod photoreceptor membranes using anti-opsin antibodies, J. Neurosci. 5: 1023–1034.PubMedGoogle Scholar
  36. Defoe, D.M., Besharse, J.C., and Fliesler, S.J., 1986, Tunicamycin-induced dysgenesis of retinal rod outer segment membranes. II. Quantitative freeze-fracture analysis, Invest. Ophthalmol. Vis. Sci. 27:1595–1601.PubMedGoogle Scholar
  37. Dentler, W.L., 1980, Microtubule-membrane interactions in cilia: I. Isolation and characterization of ciliary membranes from Tetrahymena pyriformis, J. Cell Biol. 84:364–380.PubMedCrossRefGoogle Scholar
  38. Dentler, W.L., 1981, Microtubule-membrane interactions in ctenophore swimming plate cilia, Tissue Cell 13: 197–208.PubMedCrossRefGoogle Scholar
  39. De Robertis, E., 1956a, Electron microscope observations on the submicroscopic organization of the retinal rods, J. Biophys. Biochem. Cytol. 2:319–329.CrossRefGoogle Scholar
  40. De Robertis, E., 1956b, Morphogenesis of retinal rods: An electron microscope study, J. Biophys. Biochem. Cytol. Suppl. 2:209–216.CrossRefGoogle Scholar
  41. De Robertis, E., 1960, Some observations on the ultrastructure and morphogenesis of photoreceptors, J. Gen. Physiol. 43:1–13.CrossRefGoogle Scholar
  42. Dunlap, K., 1977, Localization of calcium channels in Paramecium caudatum, J. Physiol. (London) 271:119–133.Google Scholar
  43. Eakin, R.M., and Westfall, J.A., 1961, The development of photoreceptors in the stirnorgan of the treefrog, Hyla regilla, Embryologia 6:84–98.CrossRefGoogle Scholar
  44. Fleischman, D., and Denisevich, M., 1979, Guanylate cyclase of isolated bovine retinal rod axonemes, Biochemistry 18:5060–5066.PubMedCrossRefGoogle Scholar
  45. Fleischman, D., Denisevich, M., Raveed, D., and Pannbacker, R.G., 1980, Association of guanylate cyclase with the axoneme of retinal rods, Biochim. Biophys. Acta 630:176–186.PubMedGoogle Scholar
  46. Fliesler, S.J., and Anderson, R.E., 1983, Chemistry and metabolism of lipids in the vertebrate retina, Prog. Lipid Res. 22:79–131.PubMedCrossRefGoogle Scholar
  47. Fliesler, S.J., and Basinger, S.F., 1985, Tunicamycin blocks the incorporation of opsin into rod outer segment membranes, Proc. Natl. Acad. Sci. USA 82:1116–1120.PubMedCrossRefGoogle Scholar
  48. Fliesler, S.J., Rayborn, M.E., and Hollyfield, J.G., 1985, Membrane morphogenesis in retinal rod outer segments. Inhibition by tunicamycin, J. Cell Biol. 100:574–587.PubMedCrossRefGoogle Scholar
  49. Flower, N.E., 1971, Particles within membranes: A freeze-etch view, J. Cell Sci. 9:435–441.PubMedGoogle Scholar
  50. Fukuda, M.N., Papermaster, D.S., and Hargrave, P.A., 1979, Rhodopsin carbohydrate: Structure of small oligosaccharides attached at two sites near the amino terminus, J. Biol. Chem. 254:8201–8207.PubMedGoogle Scholar
  51. Gilula, N.B., and Satir, P., 1972, The ciliary necklace: A ciliary membrane specialization, J. Cell Biol. 53: 494–509.PubMedCrossRefGoogle Scholar
  52. Goldman, B.M., and Blobel, G., 1981, In vitro biosynthesis, core glycosylation, and membrane integration of opsin, J. Cell Biol. 90:236–242.PubMedCrossRefGoogle Scholar
  53. Greiner, J.V., Weidman, T.A., Bodley, H.D., and Greiner, C.A.M., 1981, Ciliogenesis in photoreceptor cells of the retina, Exp. Eye Res. 33:433–446.PubMedCrossRefGoogle Scholar
  54. Hagins, W.A., 1972, The visual process: Excitatory mechanisms in the primary receptor cells, Annu. Rev. Biophys. Bioeng. 1:131–158.PubMedCrossRefGoogle Scholar
  55. Hall, M.O., and Nir, I., 1976, The binding of concanavalin A to the rod outer segments and pigment epithelium of normal and RCS rats, Exp. Eye Res. 22:469–476.PubMedCrossRefGoogle Scholar
  56. Hall, M.O., Bok, D., and Bacharach, A.D.E., 1969, Biosynthesis and assembly of the rod outer segment membrane system. Formation and fate of visual pigment in the frog retina, J. Mol. Biol. 45:397–406.Google Scholar
  57. Hard, R., and Rieder, C.L., 1983, Muciliary transport in newt lungs: The ultrastructure of the ciliary apparatus in isolated epithelial sheets and in functional Triton-extracted models, Tissue Cell 15:227–243.PubMedCrossRefGoogle Scholar
  58. Hennessey, T.N., Andrews, D., and Nelson, D.L., 1983, Biochemical studies of the excitable membrane of Paramecium tetraurelia. VII. Sterols and other neutral lipids of cells and cilia, J. Lipid Res. 24:575–587.PubMedGoogle Scholar
  59. Hestrin, S., and Korenbrot, J.I., 1987, Effects of cyclic GMP on the kinetics of the photocurrent in rods and detached rod outer segments, J. Gen. Physiol. 90:527–551.PubMedCrossRefGoogle Scholar
  60. Hicks, D., and Barnstable, C.J., 1986, Lectin and antibody labelling of developing rat photoreceptor cells: An electron microscope immunocytochemical study, J. Neurocytol. 15:219–230.PubMedCrossRefGoogle Scholar
  61. Hicks, D., and Barnstable, C.J., 1987, Different rhodopsin monoclonal antibodies reveal different binding patterns on developing and adult rat retina, J. Histochem. Cytochem. 35:1317–1328.PubMedCrossRefGoogle Scholar
  62. Hicks, D., and Molday, R.S., 1985, Localization of lectin receptors on bovine photoreceptor cells using dextran-gold markers, Invest. Ophthalmol. Vis. Sci. 26:1002–1013.PubMedGoogle Scholar
  63. Hicks, D., Sparrow, J., and Barnstable, C.J., 1989, Immunoelectron microscopical examination of the surface distribution of opsin in rat rod photoreceptor cells, Exp. Eye Res. in press.Google Scholar
  64. Hollyfield, J.G., Rayborn, M.E., Verner, G.E., Maude, M.B., and Anderson, R.E., 1982, Membrane addition to rod photoreceptor outer segments: Light stimulates membrane assembly in the absence of increased membrane biosynthesis, Invest. Ophthalmol. Vis. Sci. 32:417–427.Google Scholar
  65. Horst, C.J., Forestner, D.M., and Besharse, J.C., 1987, Cytoskeletal-membrane interactions: A stable interaction between cell surface glycoconjugates and doublet microtubules of the photoreceptor connecting cilium, J. Cell Biol. 105:2973–2987.PubMedCrossRefGoogle Scholar
  66. Horst, C.J., Johnson, L.V., and Besharse, J.C., 1989, A 425 kd glycoconjugate restricted to the photoreceptor connecting cilium is also found at the motile cilium transition zone, Invest. Ophthalmol. Vis. Sci. (ARVO Abstract Suppl) 30: 157.Google Scholar
  67. Jan, L.Y., and Revel, J.P., 1974, Ultrastructural localization of rhodopsin in the vertebrate retina, J. Cell Biol. 62:257–273.PubMedCrossRefGoogle Scholar
  68. Jansen, H.G., Sanyal, S., DeGrip, W.J., and Schalken, J.J., 1987, Development and degeneration of retina in rds mutant mice: Ultraimmunohistochemical localization of opsin, Exp. Eye Res. 44:347–361.PubMedCrossRefGoogle Scholar
  69. Jesaitis, A.J., and Yguerabide, J., 1986, The lateral mobility of the (Na,K)-dependent ATPase in Madin-Darby canine kidney epithelial cells, J. Cell Biol. 102:1256–1263.PubMedCrossRefGoogle Scholar
  70. Johnson, L.V., Hageman, G.S., and Blanks, J.C., 1986, Interphotoreceptor matrix domains ensheath vertebrate cone photoreceptor cells, Invest. Ophthalmol. Vis. Sci. 27:129–135.PubMedGoogle Scholar
  71. Kaplan, M.W., Iwata, R.T., and Sears, R.C., 1987, Lengths of immunolabeled ciliary microtubules in frog photoreceptor outer segments, Exp. Eye Res. 44:623–632.PubMedCrossRefGoogle Scholar
  72. Koide, H., Suganuma, T., Fusayoshi, M., and Ohba, N., 1986, Ultrastructural localization of lectin receptors in the monkey retinal photoreceptors and pigment epithelium: Application of lectin-gold complexes on thin sections, Exp. Eye Res. 43:343–354.PubMedCrossRefGoogle Scholar
  73. La Vail, M.M., 1973, Kinetics of rod outer segment renewal in the developing mouse retina, J. Cell Biol. 58: 650–661.CrossRefGoogle Scholar
  74. Liang, D.-J., Yamashita, K., Muellenberg, C.G., Shichi, H., and Kobata, A., 1979, Structure of the carbohydrate moieties of bovine rhodopsin, J. Biol. Chem. 254:6414–6418.PubMedGoogle Scholar
  75. Liebman, P.A., 1987, The molecular mechanism of visual excitation and its relation to the structure and composition of the rod outer segment, Annu. Rev. Physiol. 49:765–791.PubMedCrossRefGoogle Scholar
  76. Machemer, H., and Ogura, A., 1979, Ionic conductances of membranes in ciliated and deciliated Paramecium, J. Physiol. (London) 296:49–60.Google Scholar
  77. Madreperla, S.A., Edidin, M., and Adler, R., 1989, Na+, K+-ATPase polarity in retinal photoreceptors: A role for cytoskeletal attachments, J. Cell Biol, in press.Google Scholar
  78. Mangini, N.J., and Pepperberg, D.R., 1987, Localization of retinal “48K” (s-antigen) by electron microscopy, Jpn. J. Ophthalmol. 31:207–217.PubMedGoogle Scholar
  79. Matheke, M.L., and Holtzman, E., 1984, The effects of monensin and puromycin on transport of membrane components in the frog retinal photoreceptor. II. Electron microscope autoradiography of proteins and glycerolipids, J. Neurosci. 4:1093–1103.PubMedGoogle Scholar
  80. Matheke, M.L., Fliesler, S.J., Basinger, S.F., and Holtzman, E., 1984, The effects of monensin on transport of membrane components in the frog retinal photoreceptor. I. Light microscope autoradiography and biochemical analysis, J. Neurosci. 4:1086–1092.PubMedGoogle Scholar
  81. Matsusaka, T., 1974, Membrane particles of the connecting cilium, J. Ultrastruct. Res. 48:305–312.CrossRefGoogle Scholar
  82. Matsusaka, T., 1976, Cytoplasmic fibrils of the connecting cilium, J. Ultrastruct. Res. 54:318–324.PubMedCrossRefGoogle Scholar
  83. Menco, B.M., 1980, Qualitative and quantitative freeze-fracture studies on olfactory and respiratory epithelial surfaces of frog, ox, rat and dog, Cell Tissue Res. 212:1–16.PubMedCrossRefGoogle Scholar
  84. Molday, L.L., and Molday, R.S., 1987, Glycoproteins specific for the retinal rod outer segment plasma membrane, Biochim. Biophys. Acta 897:335–340.PubMedCrossRefGoogle Scholar
  85. Molday, R.S., 1976, A scanning electron microscope study of concanavalin A receptors on retinal rod cells labeled with latex microspheres, J. Supramol. Struct. 4:549–557.PubMedCrossRefGoogle Scholar
  86. Molday, R.S., and Molday, L.L., 1979, Identification and characterization of multiple forms of rhodopsin and minor proteins in frog and bovine rod outer segment disc membranes, J. Biol. Chem. 254:4653–4660.PubMedGoogle Scholar
  87. Molday, R.S., Hicks, D., and Molday, L., 1987, Peripherin. A rim-specific membrane protein of rod outer segment discs, Invest. Ophthalmol. Vis. Sci. 28:50–61.PubMedGoogle Scholar
  88. Monsigny, M., Roche, A.-C., Sene, C., Maget-Dana, R., and Delmotte, R., 1980, Sugar-lectin interactions: How does wheat-germ agglutinin bind sialoglycoconjugates? Eur. J. Biochem. 104:147–153.Google Scholar
  89. Mullen, R.J., and La Vail, M.M., 1976, Inherited retinal dystrophy: Primary defect in pigment epithelium determined with experimental rat chimeras, Science 192:799–801.PubMedCrossRefGoogle Scholar
  90. Musgrave, A., de Wildt, P., van Etton, I., Scholma, C., Kooyman, R., Homan, W., and van den Ende, H., 1986, Evidence for a functional membrane barrier in the transition zone between the flagellum and cell body of Chlamydomonas eugametos gametes, Planta 167:544–553.CrossRefGoogle Scholar
  91. Nelson, W.J., and Veshnock, P.J., 1986, Dynamics of membrane-skeleton (fodrin) organization during development and polarity in Madin-Darby canine kidney epithelial cells, J. Cell Biol. 103:1751–1765.PubMedCrossRefGoogle Scholar
  92. Nilsson, S.E.G., 1964, Receptor cell outer segment development and ultrastructure of the disk membranes in the retina of the tadpole (Rana pipens), J. Ultrastruct. Res. 11:581–620.PubMedCrossRefGoogle Scholar
  93. Nir, I., and Cohen, D., 1987, Surface glycoconjugates on rat photoreceptor cilium: Effect of neuraminidase, Invest. Ophthalmol. Vis. Sci. 28:1070–1077.PubMedGoogle Scholar
  94. Nir, I., and Hall, M.O., 1979, Ultrastructural localization of lectin binding sites on the surface of retinal photoreceptors and pigment epithelium, Exp. Eye Res. 29:181–194.PubMedCrossRefGoogle Scholar
  95. Nir, I,, and Papermaster, D.S., 1983, Differential distribution of opsin in the plasma membrane of frog photoreceptors: An immunocytochemical study, Invest. Ophthalmol. Vis. Sci. 24:868–878.PubMedGoogle Scholar
  96. Nir, I., and Papermaster, D.S., 1986, Immunocytochemical localization of opsin in the inner segment and ciliary plasma membrane of photoreceptors in retinas of rds mutant mice, Invest. Ophthalmol. Vis. Sci. 27: 836–840.PubMedGoogle Scholar
  97. Nir, I., Cohen, D., and Papermaster, D.S., 1984, Immunocytochemical localization of opsin in the cell membrane of developing rat retinal photoreceptors, J. Cell Biol. 98:1788–1795.PubMedCrossRefGoogle Scholar
  98. Nir, I., Sagie, G., and Papermaster, D.S., 1987, Opsin accumulation in photoreceptor inner segment plasma membranes of dystrophic RCS rats, Invest. Ophthalmol. Vis. Sci. 28:62–69.PubMedGoogle Scholar
  99. Ogura, A., and Takahashi, K., 1976, Artificial deciliation causes loss of calcium-dependent responses in Paramecium, Nature 264:170–172.PubMedCrossRefGoogle Scholar
  100. Papermaster, D.S., and Schneider, B.G., 1982, Biosynthesis and morphogenesis of outer segment membranes in vertebrate photoreceptor cells, in: Cell Biology of the Eye (D.S. McDevitt, ed.), Academic Press, New York, pp. 475–531.Google Scholar
  101. Papermaster, D.S., Converse, C.A., and Siu, J., 1975, Membrane biosynthesis in the retina: Opsin transport in the photoreceptor cell, Biochemistry 14:1343–1352.PubMedCrossRefGoogle Scholar
  102. Papermaster, D.S., Schneider, B.G., Zorn, M.A., and Kraehenbuhl, J.P., 1978, Immunocytochemical localization of a large intrinsic membrane protein to the incisures and margins of frog rod outer segment disks, J. Cell Biol. 78:415–425.PubMedCrossRefGoogle Scholar
  103. Papermaster, D.S., Schneider, B.G., and Besharse, J.C., 1985, Vesicular transport of newly synthesized opsin from the Golgi apparatus toward the rod outer segment: Ultrastructural immunocytochemical and autoradiographic evidence in Xenopus retinas, Invest. Ophthalmol. Vis. Sci. 26:1386–1404.PubMedGoogle Scholar
  104. Peters, K.R., Palade, G.E., Schneider, B.G., and Papermaster, D.S., 1983, Fine structure of a periciliary ridge complex of frog retinal rod cells revealed by ultrahigh resolution scanning electron microscopy, J. Cell Biol. 96:265–276.PubMedCrossRefGoogle Scholar
  105. Philp, N.J., Chang, W., and Long, K., 1987, Light-stimulated protein movement in rod photoreceptor cells of the rat retina, FEBS Lett. 225:127–132.PubMedCrossRefGoogle Scholar
  106. Plantner, J.J., Poncz, L., and Kean, E.L., 1980, Effect of tunicamycin on glycosylation of rhodopsin, Arch. Biochem. Biophys. 201:527–532.PubMedCrossRefGoogle Scholar
  107. Reinhardt, F.D., and Bloodgood, R.A., 1988, Membrane-cytoskeleton interactions in the flagellum: A 240 kDa surface-exposed glycoprotein is tightly associated with the axoneme in Chlamydomonas moewusii, J. Cell Sci. 89: 521–530.Google Scholar
  108. Richardson, T.M., 1969, Cytoplasmic and ciliary connections between the inner and outer segments of mammalian visual receptors, Vision Res. 9:727–731.PubMedCrossRefGoogle Scholar
  109. Ringo, D.L., 1967, Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas, J. Cell Biol. 33:543–571.PubMedCrossRefGoogle Scholar
  110. Röhlich, P., 1975, The sensory cilium of retinal rods is analogous to the transitional zone of motile cilia, Cell Tissue Res. 161:421–430.PubMedCrossRefGoogle Scholar
  111. Roof, D., and Applebury, M., 1984, Localization of calmodulin and characterization of calmodulin binding proteins in the vertebrate rod outer segment, Biophys. J. 45:1a.CrossRefGoogle Scholar
  112. Roof, D.J., and Heuser, J.E., 1982, Surfaces of rod photoreceptor disk membranes: Integral membrane components, J. Cell Biol. 95:487–500.PubMedCrossRefGoogle Scholar
  113. Sale, W.S., Besharse, J.C., and Piperno, G., 1988, Distribution of acetylated a-tubulin in retina and in in vitro-assembled microtubules, Cell Motil. Cytoskel. 9:243–253.CrossRefGoogle Scholar
  114. Sandoz, D., Boisvieux-Ulrich, E., and Chailley, B., 1979, Relationships between intramembrane particles and glycoconjugates in the ciliary membrane of the quail oviduct, Biol. Cell. 36:267–280.Google Scholar
  115. Sandoz, D., Gounon, P., Karsenti, E., and Sauron, M.-E., 1982, Immunocytochemical localization of tubulin, actin, and myosin in axonemes of ciliated cells from quail oviduct, Proc. Natl. Acad. Sci. USA 79:3198–3202.PubMedCrossRefGoogle Scholar
  116. Schneider, B.G., Papermaster, D.S., and Sweadner, K.J., 1987, Localization of the alpha + subunit of (Na,K)ATPase in the rod inner segment and axonal plasma membrane, Invest. Ophthalmol. Vis. Sci. Abstr. Suppl. 28:340.Google Scholar
  117. Schultz, J.E., and Klumpp, S., 1984, Calcium/calmodulin-regulated guanylate cyclases in the ciliary membranes from Paramecium and Tetrahymena, Adv. Cyclic Nucleotide Protein Phosphorylation Res. 17:275–283.PubMedGoogle Scholar
  118. Sjöstrand, F.S., 1959, Fine structure of cytoplasm: The organization of membranous layers, Rev. Mod. Phys. 31:301–318.CrossRefGoogle Scholar
  119. Spencer, M., Detwiler, P.B., and Bunt-Milam, A.H., 1988, Distribution of membrane proteins in mechanically dissociated retinal rods, Invest. Ophthalmol. Vis. Sci. 29:1012–1020.PubMedGoogle Scholar
  120. Spira, A.W., 1975, In utero development and maturation of the retina of a nonprimate mammal: A light and electron microscopic study of the guinea pig, Anat. Embryol. 146:279–300.PubMedCrossRefGoogle Scholar
  121. Spira, A.W., and Millman, G.E., 1982, Filament arrays in the photoreceptor cell of the human, monkey, and guinea pig retina, in: The Structure of the Eye (J.G. Hollyfield, ed.), Elsevier Biomedical, New York, pp. 1–10.Google Scholar
  122. Steinberg, R.H., and Wood, I., 1975, Clefts and microtubules of photoreceptor outer segments in the retina of the domestic cat, J. Ultrastruct. Res. 51:397–403.CrossRefGoogle Scholar
  123. Steinberg, R.H., Fisher, S.K., and Anderson, D.H., 1980, Disc morphogenesis in vertebrate photoreceptors, J. Comp. Neurol. 190:501–518.PubMedCrossRefGoogle Scholar
  124. Steinemann, A., and Stryer, L., 1973, Accessibility of the carbohydrate moiety of rhodopsin, Biochemistry 12: 1499–1502.PubMedCrossRefGoogle Scholar
  125. Stirling, C.E., and Lee, A., 1980, [3H]-ouabain autoradiography of frog retina, J. Cell Biol 85:313–324.PubMedCrossRefGoogle Scholar
  126. Tokuyasu, K., and Yamada, E., 1959, The fine structure of the retina studied with the electron microscope. IV. Morphogenesis of outer segments of retinal rods, J. Biophys. Biochem. Cytol 6:225–230.PubMedCrossRefGoogle Scholar
  127. Townes-Anderson, E., MacLeish, P.R., and Raviola, E., 1985, Rod cells dissociated from mature salamander retina: Ultrastructure and uptake of horseradish peroxidase, J. Cell Biol 100:175–188.PubMedCrossRefGoogle Scholar
  128. Umemoto, J., Bhavanandan, V.P., and Davidson, E.A., 1977, Purification and properties of an endo-a-Nacetyl-D-galactosaminidase from Diplococcus pneumoniae, J. Biol Chem. 252:8609–8614.PubMedGoogle Scholar
  129. Usukura, J., and Bok, D., 1987, Changes in the localization and content of opsin during retinal development in the rds mutant mouse: Immunocytochemistry and immunoassay, Exp. Eye Res. 45:501–515.PubMedCrossRefGoogle Scholar
  130. Weidman, T.A., and Kuwabara, T., 1968, Postnatal development of the rat retina: An electron microscopic study, Arch. Ophthalmol 79:470–484.PubMedGoogle Scholar
  131. Weidman, T.A., and Kuwabara, T., 1969, Development of the rat retina, Invest. Ophthalmol 8:60–69.PubMedGoogle Scholar
  132. Wen, G.Y., Soifer, D., and Wisniewski, H.M., 1982, The doublet microtubules of rods of the rabbit retina, Anat. Embryol 165:315–328.PubMedCrossRefGoogle Scholar
  133. Whelan, J.P., Lee, R.H., Lolley, R.N., and McGinnis, J.F., 1988, Light mediated relocalization of photoreceptor proteins coincides with protein movement, Invest. Ophthalmol. Vis. Sci. Abstr. Suppl. 29: 106.Google Scholar
  134. Williams, D.S., Linberg, K.A., Vaughan, D.K., Fariss, R.N., and Fisher, S.K., 1988, Disruption of microfilament organization and deregulation of disk membrane morphogenesis by cytochalasin D in rod and cone photoreceptors, J. Comp. Neurol. 272:161–172.PubMedCrossRefGoogle Scholar
  135. Wood, J.G., and Napier-Marshall, L., 1985a, Differential effects of protease digestion on photoreceptor lectin binding sites, J. Histochem. Cytochem. 33:642–646.PubMedCrossRefGoogle Scholar
  136. Wood, J.G., and Napier-Marshall, L., 1985b, Cytochemical analysis of oligosaccharide processing in frog photoreceptors, Histochem. J. 17:585–594.PubMedCrossRefGoogle Scholar
  137. Wood, J.G., Besharse, J.C., and Napier-Marshall, L., 1984, Partial characterization of lectin binding sites of retinal photoreceptor outer segments and interphotoreceptor matrix, J. Comp. Neurol. 228:299–307.PubMedCrossRefGoogle Scholar
  138. Wunderlich, F., and Speth, V., 1972, Membranes in Tetrahymena. I. The cortical pattern, J. Ultrastruct. Res. 41:258–269.CrossRefGoogle Scholar
  139. Yacob, A., Wise, C., and Kunz, Y.W., 1977, The accessory outer segment of rods and cones in the retina of the guppy, Poecilia reticulata P. (Teleostei). An electron microscopical study, Cell Tissue Res. 177:181–193.PubMedCrossRefGoogle Scholar
  140. Yamada, E., 1982, Morphology of vertebrate photoreceptors, Methods Enzymol. 81:3–17.PubMedCrossRefGoogle Scholar
  141. Young, R.W., 1967, The renewal of photoreceptor cell outer segments, J. Cell Biol. 33:61–72.PubMedCrossRefGoogle Scholar
  142. Young, R.W., 1968, Passage of newly formed protein through the connecting cilium of retinal rods in the frog, J. Ultrastruct. Res. 23:462–473.PubMedCrossRefGoogle Scholar
  143. Young, R.W., 1976, Visual cells and the concept of renewal, Invest. Ophthalmol. 15:700–725.Google Scholar
  144. Young, R.W., and Bok, D., 1969, Participation of the retinal pigment epithelium in the rod outer segment renewal process, J. Cell Biol. 42:392–403.PubMedCrossRefGoogle Scholar
  145. Young, R.W., and Droz, B., 1968, The renewal of protein in retinal rods and cones, J. Cell Biol. 39:169–184.PubMedCrossRefGoogle Scholar
  146. Zimmerman, A.L., Yamanaka, G., Eckstein, F., Baylor, D.A., and Stryer, L., 1985, Interaction of hydrolysis-resistant analogs of cyclic GMP with the phosphodiesterase and light-sensitive channel of retinal rod outer segments, Proc. Natl. Acad. Sci. USA 82:8813–8817.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1990

Authors and Affiliations

  • Joseph C. Besharse
    • 1
  • Cynthia J. Horst
    • 1
  1. 1.Department of Anatomy and Cell BiolgyEmory University School of MedicineAtlantaUSA

Personalised recommendations