Neurochemical and Behavioral Effects of Bilateral Nucleus Basalis Lesions in the Aged Rat

  • Edwin M. Meyer
  • William J. Millard
  • Jennifer J. Poulakos
  • Gary W. Arendash
Conference paper
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

Alzheimer’s disease is characterized by a progressive, irreversible decline in cognition and memory (Coyle et al., 1983; Whitehouse et al., 1982). Its precise cause remains unknown, with aging and family background the most likely predisposing factors. Although many brain neuronal pathways are eventually rendered hypofunctional by Alzheimer’s disease, only a few are consistently affected at its earliest stages. These pathways include the ascending cholinergic projections from the nucleus basalis to the cerebral cortex and from the septum to the hippocampus; the ascending noradrenergic pathway from the locus ceruleus; and cerebral cortical neurons possessing somatostatin, corticotropin-releasing factor (CRF), and neuropeptide Y (Beal et al., 1986; Coyle et al., 1983; Davies, 1986; and DeSouza et al., 1986). One unanswered question central to understanding the etiology and potential treatment of this disease is whether reductions in the activity of these pathways cause, over a period of months or years, transsynaptic neuronal losses and neurochemical changes. We are investigating this question by studying the long-term transsynaptic effects of cholinergic hypofunction in one of the brain regions most sensitive to Alzheimer’s disease: the cerebral cortex.

Keywords

Cage Dementia Electrophoresis Norepinephrine Glucocorticoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendash, G. W., Millard, W. J., Dunn, A. J., and Meyer, E. M., 1987, Long term neuropathological and chemical changes after lesions of the rat nucleus basalis magnocellularis, Science 238: 952–956.PubMedCrossRefGoogle Scholar
  2. Arendash, G. W., Millard, W. J., Dunn, A. J., and Meyer, E. M., 1987, Long term neuropathological and chemical changes after lesions of the rat nucleus basalis magnocellularis, Science 238: 952–956.PubMedCrossRefGoogle Scholar
  3. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., 1982, The cholinergic hypothesis of geriatric memory dysfunction, Science 217: 408–417.PubMedCrossRefGoogle Scholar
  4. Bartus, R. T., Flicker, C., Dean, R. L., Pontecorvo, M., Figueiredo, J. C., and Fisher, S. K., 1985, Selective memory loss following nucleus basalis lesions: Long term behavioral recovery despite persistent cholinergic deficiencies, Pharmacol. Biochem. Behav. 23: 125–135.PubMedCrossRefGoogle Scholar
  5. Bartus, R. T., Pontecorvo, M. J., Flicker, C., Dean, R. L., and Figueiedo, J. C., 1986, Behavioral recovery following bilateral lesions of the nucleus basalis does not occur spontaneously, Pharmacol Biochem. Behav. 24: 1287–1292.PubMedCrossRefGoogle Scholar
  6. Beal, M. F., Mazurek, M. F., Chattha, G. K., Svendsen, C. V., Bird, E. D., and Martin, J. B., 1986, Neuropeptide Y immunoreactivity is reduced in cerebral cortex in Alzheimer’s disease, Ann. Neurol. 20: 282–289.PubMedCrossRefGoogle Scholar
  7. Bottiglieri, D. F., and Meyer, E. M., Dipalmitoylphosphatidylcholine liposomes inhibit calcium dependent acetylcholine release, Neurochem. Res. 12: 739–744.Google Scholar
  8. Coyle, J. T., Price, D. L., and Delong, M. R., 1983, Alzheimer’s disease: A disorder of cortical cholinergic innervation, Science 219: 1184–1190.PubMedCrossRefGoogle Scholar
  9. Davies, P., 1986, Cholinergic and somatostatin deficits in Alzheimer’s disease, in: Treatment Development Strategies for Alzheimer’s Disease ( T. Crook, R. Bartus, S. Ferris, and S. Gershon, eds.), Mark Powley Associates, Madison, Connecticut, pp. 385–420.Google Scholar
  10. DeSouza, E. B., Whitehouse, P. J., Kuhar, M. J., Price, D. L., and Vale, W. W., 1986, Reciprocal changes in corticotropin releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease, Nature (Lond.) 319: 593–595.CrossRefGoogle Scholar
  11. Higuchi, H., and Sabol, S. L., 1987, Rat neuropeptide Y precursor mRNA: Characterization, tissue distribution, and regulation by glucocorticoids, cyclic AMP, calcium and NGF, in: Seventeenth Annual Society for Neurosciences, abst. 357.12, vol. 13, p. 1286.Google Scholar
  12. Higuchi, H., and Sabol, S. L., 1987, Rat neuropeptide Y precursor mRNA: Characterization, tissue distribution, and regulation by glucocorticoids, cyclic AMP, calcium and NGF, in: Seventeenth Annual Society for Neurosciences, abst. 357.12, vol. 13, p. 1286.Google Scholar
  13. Meyer, E. M., St. Onge, E., and Crews, F. T., 1984, Effects of aging on rat cortical presynaptic cholinergic processes, Neurobiol. Aging 5: 315–317.Google Scholar
  14. Meyer, E. M., Crews, F. T., Otero, D. H., and Larsen, K., 1986, Aging decreases the sensitivity of rat cortical synaptosomes to calcium ionophore-induced acetylcholine release, J. Neurochem. 47: 1244–1246.PubMedCrossRefGoogle Scholar
  15. Montminy, M. R., and Bilezikjian, L. M., 1987, Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene, Nature(Lond.) 328: 175–178.CrossRefGoogle Scholar
  16. Mouton, P. R., Meyer, E. M., Dunn, A. J., Millard, W. J., and Arendash, G. W., 1987, Induction of cortical cholinergic hypofunction and memory retention deficits through intracortical AF64A infusions, Brain Res. 444: 104–118.CrossRefGoogle Scholar
  17. Murray, C. L., and Fibiger, H. C., 1985, Learning and memory deficits after lesions of the nucleus basalis magnocellularis: Reversal by physostigmine, Neuroscience 14: 1025–1032.PubMedCrossRefGoogle Scholar
  18. Olianas, M. C., Onali, P., Neff, N. H., and Costa, E., 1983, Adenylate cyclase activity of synaptic membranes from rat striatum: Inhibition by muscarinic agonists, Mol. Pharmacol. 23: 393–398.PubMedGoogle Scholar
  19. Peterson, C., and Gibson, G. E., 1983, Aging and 3,4-diaminopyridine alter synaptosomal calcium uptake, J. Biol. Chem. 258: 11482–11486.PubMedGoogle Scholar
  20. Roskoski, R., 1973, Choline acetyltransferase. Evidence for an acetylenzyme reaction intermediate, Biochemistry 12: 3709–3713.PubMedCrossRefGoogle Scholar
  21. Whitehouse, P. J., Price, D. L., Struble, R. G., Clark, A. W., Coyle, J. T., and Delong, M. R., 1982, Alzheimer’s disease and senile dementia: Loss of neurons in the basal forebrain, Science 215: 1237–1239.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Edwin M. Meyer
    • 1
  • William J. Millard
    • 2
  • Jennifer J. Poulakos
    • 1
  • Gary W. Arendash
    • 3
  1. 1.Department of Pharmacology and Therapeutics, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of Pharmacodynamics, College of PharmacyUniversity of FloridaGainesvilleUSA
  3. 3.Department of BiologyUniversity of South FloridaTampaUSA

Personalised recommendations