Advertisement

Zinc, Immunity, and Aging

  • Nicola Fabris
  • Eugenio Mocchegiani
  • Mario Muzzioli
  • Mauro Provinciali
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)

Abstract

A good body of experimental and clinical evidence supports the idea that, with advancing age, the immune system undergoes a progressive deterioration of efficiency and that such a decline largely depends on the involution of the thymus, this phenomenon being considered one of the earliest and irreversible age-related events (Walford, 1969). With advancing age, the thymus shows a progressive decline in function, as demonstrated by the reduced size of the organ, by hystological evidence of hypotrophy of the cortex with frequent corticomedullary inversion (G. Goldstein and Mackay, 1969) and by the reduced plasma level of thymic hormones such as thymosin ∝1 (McClure et al., 1982), thymopoietin (Lewis et al., 1978), and the facteur timique sérique (FTS), more recently called thymulin in its zinc-bound active form (J. F. Bach et al., 1972; Fabris et al., 1984).

Keywords

Zinc Deficiency Acquire Immune Deficiency Syndrome Vasoactive Intestinal Polypeptide Zinc Supplementation Luteinizing Hormone Release Hormone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. I., Kay, E. N., and MacClain, C. S., 1981, Severe zinc deficiency in humans. Association with a reversible T-lymphocyte dysfunction, Ann. Intern Med. 95: 154–157.PubMedGoogle Scholar
  2. Bach, J. F., Dardenne, M., Papiernik, M., Barois, A., Levasseur, P., and Le Brigant, H., 1972, Evidence for a serum thymic factor produced by the human thymus, Lancet 2: 1056–1058.PubMedCrossRefGoogle Scholar
  3. Bach, M. A., and Beaurain, G., 1979, Respective influence of extrinsic and intrinsic factors on the age- related decrease of thymic secretion, J. Immunol. 122: 2505–2507.PubMedGoogle Scholar
  4. Beach, R. S., Gershwin, M. E., and Hurley, L. S., 1981, Nutritional factors and autoimmunity. I. Immunopathology of zinc deprivation in New England mice, J. Immunol. 126: 1999–2006.PubMedGoogle Scholar
  5. Chandra, R. K., 1985, Trace element regulation of immunity and infection, J. Am. Coll. Nutr. 4: 5–16.PubMedGoogle Scholar
  6. Chandra, R. K., 1989, Nutritional regulation of immunity and risk of infection in old age, Immunology 67: 141–147.PubMedGoogle Scholar
  7. Chvapil, M., 1976, Effect of zinc on cells and biomembranes, Med. Clin. North Am. 60: 799–812.PubMedGoogle Scholar
  8. Dardenne, M., Pleau, J. M., Nabama, B., Lefancier, P., Denien, M., Choay, J., and Bach, J. F., 1982, Contribution of zinc and other metals to the biological activity of the serum thymic factor, Proc. Natl. Acad. Sci. USA 79: 5370–5373.PubMedCrossRefGoogle Scholar
  9. Ducheateu, J., Delespesse, G., Vrijen, R., and Coolet, H., 1981, Beneficial effects of oral zinc supplementation on the immune response of old people, Am. J. Med. 70: 1001–1004CrossRefGoogle Scholar
  10. Fabris, N., 1981, Ontogenetic and phylogenetic aspects of neuroendocrine-immune network, Dev. Comp. Immunol. 5 (l): 46–53.CrossRefGoogle Scholar
  11. Fabris, N., and Piantanelli, L., 1982, Thymus-neuroendocrine interactions during development and aging, in: Hormones and Aging ( R. C. Adelman and G. S. Roth, eds.), CRC Press, Boca Raton, Florida, pp. 167–171.Google Scholar
  12. Fabris, N., and Mocchegiani, E., 1985, Endocrine control of thymic serum factor production in young- adult and old mice, Cell Immunol. 91: 325–385.PubMedCrossRefGoogle Scholar
  13. Fabris, N., Mocchegiani, E., Amadio, L., Zannotti, M. Licastro, F., and Franceschi, C., 1984, Thymic hormone deficiency in normal aging and Down’s syndrome: Is there a primary failure of the thymus?, Lancet 1: 983–986.PubMedCrossRefGoogle Scholar
  14. Fabris, N., Mocchegiani, E., Mariotti, S., Pancini, F., and Pinchera, A., 1986, Thyroid function modulates thymus endocrine activity, J. Clin. Endocrinol. Metab. 62: 474–478.PubMedCrossRefGoogle Scholar
  15. Fabris, N., Mocchegiani, E., Galli, M., Irato, L., Lazzarin, A., and Moroni, M., 1988a, AIDS, zinc deficiency, and thymic hormone failure, JAMA 259: 839–840.PubMedCrossRefGoogle Scholar
  16. Fabris, N., Mocchegiani, E., Muzzioli, M., and Provinciali, M., 1988b, Neuroendocrine-thymus interaction: Perspectives for intervention in aging, in: Neuroimmunomodulation: Interventions in Aging and Cancer ( W. Pierpaoli and H. Spector, eds.), Annals of the New York Academy of Science, New York, pp. 145–149.Google Scholar
  17. Fabris, N., Mocchegiani, E., and Palloni, R., 1988c, Zinc-dependent failure of thymic hormones in human pathologies, in: Trace Elements in Man and Animals ( L. S. Hurtley, ed.), Plenum, New York, pp. 315–317.Google Scholar
  18. Fraker, P. J., Haas, S., and Luecke, R. W., 1977, Effect of zinc deficiency on the immune response of the young adult A/Jax mouse, J. Nutr. 107: 1889–1895.PubMedGoogle Scholar
  19. Goldstein, A. L. (ed.), 1984, Thymic Hormones and Lymphokines, Plenum, New York, pp. 1–669.Google Scholar
  20. Goldstein, G., and Mackay, I. R., 1969, The Human Thymus, Heinemann, London, p. 1–168.Google Scholar
  21. Greenstein, B. D., Fitzpatrick, F. T., Kendall, M. D., and Wheeler, M. J., 1987, Regeneration of the thymus in old male rats treated with a stable analogue of LHRH, J. Endocr. 112: 345–350.PubMedCrossRefGoogle Scholar
  22. Hsu, J. M., 1979, Current Knowledge on zinc, copper and chromium in ageing, World Rev. Nutr. Diet 33: 42–69.PubMedGoogle Scholar
  23. Iwata, T., Incefy, G. S., Tanaka, T., Fernandes, G., Menendez-Botet, C. I., Pih, K., and Good, R. A., 1979, Circulating thymic hormone levels in zinc deficiency, Cell Immunol. 47: 100–105.PubMedCrossRefGoogle Scholar
  24. Kelley, K. W., Brief, S., Westly, H. J., Novakofski, J., Bechtel, P. J., Simon, J., and Walker, E. B., 1986, GH3 pituitary adenoma cells can reverse thymic aging in rats, Proc Natl Acad Sci. USA 83: 5663–5667.PubMedCrossRefGoogle Scholar
  25. Lewis, V. M., Twomey, J. J., Bealmear, P., Goldstein, G., and Good, R. A., 1978, Age, thymic involution, and circulating thymic hormone activity, J. Clin. Endocrinol. Metab. 47: 145–150.PubMedCrossRefGoogle Scholar
  26. McClain, C. S., 1985, Zinc metabolism in malabsorption syndromes, J. Am. Coll. Nutr. 4: 49–64.PubMedGoogle Scholar
  27. McClure, J. E., Lameris, N., Wara, D. W., and Goldstein, A. L., 1982, Immunochemical studies on thymosin: Radioimmunoassay of thymosin alpha 1, J. Immunol. 128: 368–372.PubMedGoogle Scholar
  28. Meites, J., Goya, R., and Takahashi, S., 1987, Why the neuroendocrine system is important in aging processes, a review, Exp. Gerontol. 22: 1–15.PubMedCrossRefGoogle Scholar
  29. Mocchegiani, E., and Fabris, N., 1989a, Trace elements, immunity and aging. II. Recovery of thymic endocrine activity by zinc supplementation in old mice, submitted.Google Scholar
  30. Mocchegiani, E., and Fabris, N., 1989a, Trace elements, immunity and aging. II. Recovery of thymic endocrine activity by zinc supplementation in old mice, submitted.Google Scholar
  31. Muzzioli, M., Mocchegiani, E., Provinciali, M., Zaia, A. M., and Fabris, N., 1989, Trace elements immunity and aging. I. Recovery of mitogen responsiveness and natural cytotoxicity by zinc supplementation in old mice, submitted.Google Scholar
  32. Pattison, S. E., and Dunn, M. F., 1975, On the relationship of zinc ion to the structure and function of the 7S nerve growth factor protein, Biochemistry 14: 2373–2377.CrossRefGoogle Scholar
  33. Prasad, A. S., 1982, History of Zinc in Human Nutrition in Clinical Applications of Recent Advances in Zinc Metabolism, Liss, New York, pp. 1–17.Google Scholar
  34. Prasad, A. S., 1985, Clinical, endocrinological and biochemical effects of zinc-deficiency, Clin. Endocrinol. Metab. 14: 567–589.PubMedCrossRefGoogle Scholar
  35. Sandstead, H. H., 1982, Availability of zinc and its requirements in human subjects, in: Clinical, Biochemical and Nutritional Aspects of Trace Elements ( A. S. Prasad, ed.), Liss, New York, pp. 83–102.Google Scholar
  36. Savino, W., and Dardenne, M., 1984, Thymic hormone-containing cells. VI. Immunohistologic evidence for the simultaneous presence of thymulin, thymopoietin and thymosin alpha 1 in normal and pathological human thymuses, Eur. J. Immunol. 14: 987–991.PubMedCrossRefGoogle Scholar
  37. Travaglini, P., Moriondo, P., Togni, E., Venegoni, P., Bocchicchio, D., Faglia, G., Ambroso, G., Ponticelli, C., Mocchegiani, E., and Fabris, N., 1989, Effect of oral zinc administration on prolactin and thymuli circulating levels in uremic patients, J. Clin. Endocrinol. Metab. 68: 186–190.PubMedCrossRefGoogle Scholar
  38. Turnlund, J. R., Durvin, N., Costa, F., and Margen, S., 1986, Stable isotope studies of zinc absorption and retention in young and elderly men, J. Nutr. 116: 1239–1247.PubMedGoogle Scholar
  39. Underwood, E. J., 1977, Trace elements in human and animal nutrition, 4th ed., Academic, New York, pp. 1–302.Google Scholar
  40. USDA, 1980, Science and Education Administration, Food and Nutrient Intakes of Individuals in 1 day in the United States, Spring 1977, Preliminary Report No. 2, U.S. Department of Agriculture, Washington, D. C., 1980, Vol. 40, p. 45.Google Scholar
  41. Walford, R. L., 1969, The Immunologic Theory of Aging, Munksgaard, Copenhagen, pp. 1–248.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Nicola Fabris
    • 1
  • Eugenio Mocchegiani
    • 1
  • Mario Muzzioli
    • 1
  • Mauro Provinciali
    • 1
  1. 1.Gerontology Research DepartmentItalian National Research Center on AgingAnconaItaly

Personalised recommendations