Effects of Various Stimulators and Inhibitors on the Respiratory Burst of PMNL with Aging

  • Zsuzsa Varga
  • Gabriella Foris
  • Sàndor Szucs
  • Tamàs FülöpJr.
  • Andràs Leovey
Conference paper
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


It is well known that the incidence of certain diseases such as infections (Gardner, 1980), atherosclerosis (Stout, 1987), diabetes mellitus (DeFronzo, 1981), and tumors (Doll et al., 1970) is increased with aging. It can be assumed that the cause of this increased incidence is multifactorial, but the decrease of the immune response certainly plays an important role (Makinodan and Kay, 1980; Corberand et al., 1981). It was established that the oxidative burst plays an essential role in the host defense against pathogens and other microorganisms (Johnston et al., 1976; Babior and Crowley, 1983); therefore, an alteration of the respiratory burst could contribute to the increased incidence of infectious diseases with aging.


NADPH Oxidase Respiratory Burst Chronic Granulomatous Disease Pertussis Toxin NADPH Oxidase Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdel-Latif, A. A., 1986, Calcium mobilizing receptors, phosphoinositides and the generation of second messengers, Pharmacol. Rev. 38: 227–272.PubMedGoogle Scholar
  2. Abraham, E. C., Taylor, J. F., and Lang, C. A., 1978, Influence of mouse age and erythrocyte age on glutathione metabolism, Biochem. J. 174: 819–825.PubMedGoogle Scholar
  3. Babior, B. M., and Crowley, C. A., 1983, Chronic granulomatous disease and other disorders of oxidative killing by phagocytes, in: Metabolic Basis of Inherited Diseases ( J. B. Stanburg, J. B. Wyngaarden, and D. S. Fredickson, eds.), McGraw-Hill, New York, pp. 1956–1985.Google Scholar
  4. Berridge, M. J., 1986, Intracellular signalling transductions of inositol trisphosphate and diacylglycerol, Biol. Chem. Hoppe-Seyler 367: 447–456.PubMedCrossRefGoogle Scholar
  5. Burch, R. M., Luine, A., and Axelrod, J., 1986, Phospholipase A2 and phospholipase C are activated by distinguished GTP-binding protein in FRTL5 thyroid cells, Proc. Natl. Acad. Sci. USA 83: 7201–7205.PubMedCrossRefGoogle Scholar
  6. Castagne, M., Tokai, Y., Kaibuchi, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium activated phospholipid dependent protein kinase by tumor promoting phorbol esters, J. Biol. Chem. 257: 7847–7853.Google Scholar
  7. Corberand, G., Ngyen, F., Laharrague, P., Fontanilles, A. N., Gleyzes, B., Gyrard, E., and Senegas, C., 1981, Polymorphonuclear functions and aging in humans, J. Am. Geriatr. Soc. 29: 391–397.PubMedGoogle Scholar
  8. DeFronzo, R. A., 1981, Glucose intolerance and aging, Diabetes Care 4: 493–501.PubMedCrossRefGoogle Scholar
  9. Doll, R., Muir, C., and Waterhous, J., 1970, Cancer Incidence in Five Continents, Vol. 2, IUCC, Springer, Berlin.Google Scholar
  10. Drazmin, B., Sussman, K., Kao, M., Lewis, D., and Sherman, N., 1987, The existence of an optimal range of cytosolic free calcium for insulin stimulated glucose transport in rat adipocytes, J. Biol. Chem. 262: 14385–14388.Google Scholar
  11. Fülöp, T., Jr., Foris, G., Worum, I., Paragh, G., and Leovey, A., 1985, Age-related variations of some polymorphonuclear leukocyte functions, Mech. Aging Dev. 29: 1–8.PubMedCrossRefGoogle Scholar
  12. Fülöp, T., Jr., Hauck, M., Worum, I., Foris, G., and Leovey, A., 1987, Alterations of the FMLP- induced Ca2+ efflux from human monocytes with aging, Immunol. Lett. 14: 283–286.PubMedCrossRefGoogle Scholar
  13. Fülöp, T., Jr., Foris, G., Nagy, T. J., Varga, Z., and Leovey, A., 1988, Respiratory burst and aging, in: Respiratory Burst and Its Physiologic Significance in Medicine ( A. J. Sbarra and R. R. Strauss, eds.), Plenum, New York, pp. 419–435.Google Scholar
  14. Gardner, I. D., 1980, The effect of aging on susceptibility to infections, Rev. Infect. Dis. 2: 801–810.PubMedCrossRefGoogle Scholar
  15. Halliwell, B., 1978, Biochemical mechanisms accounting for the toxic action of oxygen in living organisms: The key role of superoxide dismutase, Cell. Biol. Int. Rep. 2: 113–128.PubMedCrossRefGoogle Scholar
  16. Harman, D., 1978, Free radical theory of aging: Nutritional implications, Age 1: 143–150.Google Scholar
  17. Harman, D., Heidrick, M. L., and Eddy, D. E., 1977, Free radical theory of aging. Effect of free- radical-reaction inhibitors on the immune response, J. Am. Geriatr. Soc. 25: 400–407.PubMedGoogle Scholar
  18. Johnston, R. B., Lehmeyer, J. E., and Guthrie, L. A., 1976, Generation of superoxide anion and chemiluminescence by human monocytes during phagocytosis and on contact with surface-bound immunoglobulin G, J. Exp. Med. 143: 1551–1563.PubMedCrossRefGoogle Scholar
  19. Makinodan, T., and Kay, M. M. B., 1980, Age-influences on the immune system, in: Advances in Immunology ( E. Kungel and B. C. Dixon, eds.), Academic, New York, pp. 287–300.Google Scholar
  20. McLaughlin, B., O’Malley, K., and Cotter, T. G., 1986, Age-related differences in granulocyte chem- otaxis and degranulation, Clin. Sci. 70: 59–62.PubMedGoogle Scholar
  21. McPhail, L. C., Henson, P. M., and Johnston, R. B., 1981, Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of action, J. Clin. Invest. 67: 710–716.PubMedCrossRefGoogle Scholar
  22. Nagel, J. E., Pyle, R. S., Chrest, F. J., and Adler, W., 1982, Oxidative metabolism and bactericidal capacity of polymorphonuclear leukocytes from normal young and aged adults, J. Gerontol. 37: 529–534.PubMedGoogle Scholar
  23. Negoro, S., Hara, H., Miyata, S., Saiki, O., Tanaka, T., Yoshizaki, K., Nishimoto, N., and Kishimoto, S., 1987, Age-related changes of the function of T cell subsets predominant defect of the proliferative response in CD8 positive T cell subsets in aged persons, Mech. Aging Dev. 39: 263–279.PubMedCrossRefGoogle Scholar
  24. Parini, I. M., and Tauber, A. I., 1986, Activation of NADPH oxidase by arachidonic acid involves phospholipase A2 in intact human neutrophils but not in the cell free system, Biochem. Biophys. Res. Commun. 138: 1099–1105.CrossRefGoogle Scholar
  25. Roth, G. S., 1986, Effect of aging on mechanisms of a-adrenergic and dopaminergic action, Fed. Proc. 45: 60–64.PubMedGoogle Scholar
  26. Sakata, A., Ida, E., Tominaga, M., and Onone, K., 1987, Arachidonic acid acts as an intracellular activator of NADPH oxidase in Fc receptor-mediated superoxide generation in macrophages, J. Immunol. 138: 4353–4359.PubMedGoogle Scholar
  27. Stout, R. W., 1987, Aging and atherosclerosis, Age Aging 26: 65–72.CrossRefGoogle Scholar
  28. Tappel, A. L., 1973, Lipid peroxidation damage to cell components, Fed. Proc. 32: 1870–1875.PubMedGoogle Scholar
  29. Thompson, C. D., Rea, H. M., and Robinson, M. F., 1977, Low blood selenium levels and glutathione peroxidase activity in elderly people, Proc. Univ. Otego Med. Sch. 55: 19–26.Google Scholar
  30. Varga, Z. S., Kovàcs, E. M., Paragh, G., Fülöp, T., Jr., Jacob, M. P., Robert, L., 1988, Effect of K-elastin (KE) and N-Formyl-methionyl-leucyl-phanylalanine (FMLP) on PMNLs of healthy middle- aged and aged subjects, Clin. Biochem. 21: 127–130.PubMedCrossRefGoogle Scholar
  31. Westwick, J., and Poll, C., 1986, Mechanism of calcium homeostasis in the polymorphonuclear leukocytes, Agents Actions 19: 80–86.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Zsuzsa Varga
    • 1
  • Gabriella Foris
    • 1
  • Sàndor Szucs
    • 1
  • Tamàs FülöpJr.
    • 1
  • Andràs Leovey
    • 1
  1. 1.First Department of MedicineUniversity Medical School of DebrecenDebrecenHungary

Personalised recommendations