Molecular Aging of Membrane Molecules and Cellular Removal

  • Marguerite M. B. Kay
Conference paper
Part of the GWUMC Department of Biochemistry Annual Spring Symposia book series (GWUN)


Investigations into mechanisms by which macrophages distinguish mature from senescent calf cells showed that a glycoprotein, senescent cell antigen, a terminal differentiation antigen, appears on the surface of senescent cells (Kay, 1974, 1975, 1978, 1981a–c, 1982a; Bennett and Kay, 1981; Kay and Bennett, 1982; Kay et al., 1982). It is recognized by the antigen-binding Fab region (Kay, 1978) of a specific immunoglobulin G (IgG) autoantibody in serum that attaches to cells carrying senescent cell antigen and initiates their removal by marcophages (Kay, 1975, 1978). Senescent cell antigen was first observed on the surface of senescent human erythrocytes (Kay, 1974, 1975) but has since been demonstrated on the surface of lymphocytes, polymorphonuclear leukocytes, platelets, embryonic kidney cells, and adult liver cells (Kay, 1981a).


Senescent Cell Anion Transport Molecular Aging Ninth International Symposium Senescent Erythrocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agre, P., Orringer, E. P., Chui, D., and Bennett, V., 1981, A molecular defect in two families with hemolytic poikilocytic anemia. Reduction of high affinity membrane binding sites of ankyrin, J. Clin. Invest. 68: 1566–1576.PubMedCrossRefGoogle Scholar
  2. Alderman, E. M., Fudenberg, H. H., and Lovins, R. E., 1980, Binding of immunoglobulin classes to subpopulations of human red blood cells separated by density-gradient centrifugation, Blood 55: 817–822.PubMedGoogle Scholar
  3. Aminoff, D., and VorderBruegge, W., 1978, Viability of erythrocytes in circulation and its dependence on cell surface glycoconjugates, in: Glycoconjugates Research, Vol. II, Proceedings of the Fourth International Symposium on Glycoconjugates, Academic, New York, pp. 1011–1014.Google Scholar
  4. Aminoff, D., Bruegge, W. F. V., Bell, W. C., Sarpolis, K., and Williams, R.,1977, Role of sialic acid in survival of erythrocytes in the circulation: Interaction of neuraminidase-treated and untreated erythrocytes with spleen and liver at the cellular level, Proc. Natl. Acad. Sci. USA 74: 1521–1524.Google Scholar
  5. Ashwell, G., and Morell, A. G., 1974, The role of surface carbohydrates in the hepatic recognition and transport of circulating glycoproteins, Adv. Enzymol. 41: 99–128.PubMedGoogle Scholar
  6. Bartosz, G., Sosynski, M., and Kedziona, J., 1982a, Aging of the erythrocyte. VI. Accelerated red cell membrane aging in Down’s syndrome? Cell Biol. Int. Rep. 6: 73–77.PubMedCrossRefGoogle Scholar
  7. Bartosz, G., Sosynski, M., and Wasilewski, A., 1982b, Aging of the erythrocyte XVII. Binding of Autologous immunoglobin, J. Mech. Aging Dev. 20: 223–232.CrossRefGoogle Scholar
  8. Bennett, G. D., and Kay, M. M. B., 1981, Homeostatic removal of senescent murine erythrocytes by splenic macrophages, Exp. Hematol. 9: 297–307.PubMedGoogle Scholar
  9. Bennett, V., and Stenbuck, P. J., 1979, The membrane attachment protein for spectrin is associated with band 3 in human erythrocyte membrane, Nature (Lond.) 280: 468–473.CrossRefGoogle Scholar
  10. Bosman, G. J. C. G. M., Johnson, G., Beth, A., and Kay, M. M. B. 1988, Band 3 polymers and aggregates, and hemoglobin precipitates in red cell aging, Blood Cells 14: 275–289.PubMedGoogle Scholar
  11. Bosman, G. J. C. G. M., and Kay, M. M. B., 1900, Erythrocyte aging: A comparison of model systems for simulating cellula aging in vitro, Blood Cells 14: 19–35.Google Scholar
  12. Brown, P. A., Feinstein, M. B., and Shuaki, R. I., 1975, Membrane proteins related to water transport in human erythrocytes, Nature (Lond.) 254: 523–525.CrossRefGoogle Scholar
  13. Cabantchik, Z. I., and Rothstein, A., 1974, Membrane proteins related to anion permeability of human red blood cells. I. Localization of disulfonic stilben binding sites in proteins involved in permeation, J. Membr. Biol. 15: 207–226.PubMedCrossRefGoogle Scholar
  14. Cheng, S., and Levy, L. D. N., 1980, Characterization of the anion transport system in hepatocyte plasma membranes, 7. Biol. Chem. 255: 2637–2640.Google Scholar
  15. Cox, J. V., Moon, R. T., and Lazarides, E., 1985, Anion transporter: Highly cell-type-specific expression of distinct polypeptides and transcripts in erythroid and nonerythroid cells, J. Cell Biol. 100: 1548–1557.PubMedCrossRefGoogle Scholar
  16. Dodge, J. T., Cohen, G., Kayden, H. J., and Phillips, G. B., 1967, Peroxidative hemolysis of red blood cells from patients with abetalipoproteinemia, J. Clin. Invest. 46: 357–368.PubMedCrossRefGoogle Scholar
  17. Drenckhan, D., Zinke, K., Schauer, U., Appell, K. C., and Low, P. S., 1984, Identification of immunoreactive forms of human erythrocyte band 3 in nonerythroid cells, Eur. J. Cell. Biol. 34: 144–150.Google Scholar
  18. Drenckhahn, D., Schulter, K., Allen, D. P., and Bennett, V., 1985, Colonization of band 3 with ankyrin and spectrin at the basal membrane of intercalated cells in the rat kidney, Science 230: 1287–1289.PubMedCrossRefGoogle Scholar
  19. Elder, J. H., Pickett, R. A. II, Hampton, J., and Lerner, R. A., 1977, Radioiodination of proteins in single polyacylamide gel slices, J. Biol. Chem. 252: 6510–6515.PubMedGoogle Scholar
  20. Farrell, P., Bieri, J. G., Fratantoni, J. F., and Wood, R. E., 1977, The occurrence and effects of human Vitamin E deficiency, J. Clin. Invest. 60: 233–241.Google Scholar
  21. Furthmayer, H. J., 1978, Glycophorins A, B, and C: A family of sialoglycoproteins: Isolation and preliminary characterization of trypsin derived proteins, J. Supramol. Struct. 9: 79–98.CrossRefGoogle Scholar
  22. Galili, U., Korkesh, A., Kahane, I., and Rachmilewiltz, A., 1983, Demonstration of a natural antigalactosyl IgG antibody on thalassemic red blood cells, Blood 61: 1258–1264.PubMedGoogle Scholar
  23. Galili, U., Rachmilewitz, E. A., Peleg, A., and Flechner, I., 1984, A unique natural human IgG antibody with anti-α-galactosyl specificy, J. Exp. Med. 160: 1519–1531.PubMedCrossRefGoogle Scholar
  24. Galili, U., Flechner, I., and Rachmilewtz, E. A., 1985, A naturally occurring anti-α-galactosyl IgG recognizing senescent human red cells, in: Cellular and Molecular Aspects of Aging: The Red Cell as a Model ( J. W. Eaton, D. K. Konzen, and J. G. White, eds.), Liss, New York, pp. 263–276.Google Scholar
  25. Galili, U., Clark, M. R., Shohet, S. B., Beuhler, J., and Macher, B. A., 1987, Evolutionary relationship between the natural anti-Gel antibody and the Galal 3 gel epitode in primates, Proc. Natl. Acad. Sci. USA 84: 1369–1373.PubMedCrossRefGoogle Scholar
  26. Glass, G. A., Gershon, H., and Gershon, D., 1983, The effect of donor and cell age on several characteristics of rat erythrocytes, Exp. Hematol. 11: 987–995.PubMedGoogle Scholar
  27. Halhuber, K. T., Stibenz, D., Feuerstein, H., Linss, W., Meyer, H. W., Frober, R., Rumpel, E., and Geyer, G., 1980, Abstracts of the Ninth International Symposium on Structure and Function of Erythroid Cells, Berlin, p. 66.Google Scholar
  28. Hebbell, R. P., and Miller, W. J., 1984, Phagocytosis of sickle erythrocytes: Immunologic and oxidative determinants of hemolytic anemia, Blood 64: 733–741.Google Scholar
  29. Karadsheh, N. S., Uyeda, K., and Oliver, R. M., 1977, Studies on structure of human erythrocyte phosphofructokinase, J. Biol. Chem. 252: 3515–3524.PubMedGoogle Scholar
  30. Kay, M. M. B., 1974, Mechanism of removal of senescent red cells, Gerontologist 14: 33.CrossRefGoogle Scholar
  31. Kay, M. M. B., 1975, Mechanism of removal of senescent cells by human macrophages in situ, Proc. Natl. Acad. Sci. USA 72: 3521–3525.PubMedCrossRefGoogle Scholar
  32. Kay, M. M. B., 1978, Role of physiologic autoantibody in the removal of senescent human red cells, J. Supramol. Struct. 9: 555–567.PubMedCrossRefGoogle Scholar
  33. Kay, M. M. B., 1981a, Isolation of the phagocytosis inducing IgG-binding antigen on senescent somatic cells, Nature (Lond.) 289: 491–494.CrossRefGoogle Scholar
  34. Kay, M. M. B., 1981b, The IgG autoantibody binding determinant appearing on senescent cells resides on a 62,000 MW peptide, Presented at the Ninth International Symposium on Structure and Function of Erythroid Cells, Berlin, Acta. Biol. Med. Gerontol. 40: 385–391.Google Scholar
  35. Kay, M. M. B., 1981c, The senescent cell antigen is not a desialylated glycoprotein, Blood 58: 90a.Google Scholar
  36. Kay, M. M. B., 1982a, Molecular aging: A termination antigen appears on senescent cells, in: Protides of the Biological Fluids Molecular, Vol. 29 (C. Peeters, ed.), Twenty-ninth Annual Colloquium Protides of the Biological Fluids, Brussels, Belgium, 1981, Pergamon Press, Oxford, pp. 325–338.Google Scholar
  37. Kay, M. M. B., 1982b, Accumulation of band 3 breakdown products is a function of cell age, Twenty-third Annual Meeting of the American Society of Hematology, Washington, D. C., Blood 60:21 a.Google Scholar
  38. Kay, M. M. B., 1984a, Band 3, the predominant transmembrane polypeptide undergoes proteolytic degradation as cells age, Monogr. Dev. Biol. 17: 245–253.PubMedGoogle Scholar
  39. Kay, M. M. B., 1984b, Localization of senescent cell antigen on band 3, Proc. Natl. Acad. Sci. USA 81: 5753–5757.PubMedCrossRefGoogle Scholar
  40. Kay, M. M. B., 1985a, Immune system: Expression and regulation of cellular aging, in: Thresholds in Aging (The 1984 Sandoz Lectures in Gerontology), ( M. Bergener, M. Ermimi, and H. B. Stahelin, eds.), Academic, London, pp. 59–82.Google Scholar
  41. Kay, M. M. B., 1985b, Aging of cell membrane molecules leads to appearance of an aging antigen and removal of senescent cells, Gerontology 31: 215–235.PubMedCrossRefGoogle Scholar
  42. Kay, M. M. B., 1986, Senescent cell antigen: A red cell aging antigen, in: Red Cell Antigens and Antibodies (G. Garratty, ed.), American Association of Blood Banks, Arlington, Virginia, pp. 3582.Google Scholar
  43. Kay, M. M. B., 1989, in: Iron, The Lymphomyeloid System, Inflammation and Malignancy (M. de Sousa and J. Brock, eds.), Wiley, London, pp. 17–33.Google Scholar
  44. Kay, M. M. B., and Bennett, G. D., 1982, Letter to the Editor, Blood 59: 1111–1112.PubMedGoogle Scholar
  45. Kay, M. M. B., and Bosman, G. J. C. G. M., 1985, Naturally occurring human “antigalactosyl” IgG antibodies are heterophile antibodies recognizing blood group related substances, Exp. Hematol. 13: 1103–1112.PubMedGoogle Scholar
  46. Kay, M. M. B., and Goodman, J. R., 1984, IgG antibodies do not bind to band 3 in intact erythrocytes; enzymatic treatment of cells is required for IgG binding, Biomed. Biochem. Acta 43: 841–846.Google Scholar
  47. Kay, M. M. B., Wong, P., and Bolton, P., 1982, Antigenicity, storage and aging: Physiologic autoantibodies to cell membrane and serum proteins, Mol. Cell. Biochem. 49: 65–85.PubMedCrossRefGoogle Scholar
  48. Kay, M. M. B., Goodman, S., Whitfield, C., Wong, P., Zaki, L., and Rudoloff, V., 1983a, The senescent cell antigen is immunologically related to band 3, Proc. Natl. Acad. Sci. USA 80: 1631–1635.PubMedCrossRefGoogle Scholar
  49. Kay, M. M. B., Tracey, C., Goodman, J., Cone, J. C., and Bassel, P. S., 1983b, Polypeptides immunologically related to band 3 are present in nucleated somatic cells, Proc. Natl. Acad. Sci. USA 80: 6882–6886.PubMedCrossRefGoogle Scholar
  50. Kay, M. M. B., Bosman, G. J. C. G. M., Shapiro, S. S., Bendich, A., and Bassell, P. S., 1986, Oxidation as a possible mechanism of cellular aging: Vitamin E deficiency causes premature aging and IgG binding to erythrocytes, Proc. Natl. Acad. Sci. USA 83: 2463–2467.Google Scholar
  51. Kay, M. M. B., Lawrence, C., and Bosman, G. J. C. G. M., 1987, Molecular anatomy of an anemia, Clin. Res. 35: 599.Google Scholar
  52. Kay, M. M. B., Bosman, G. J. C. G. M., and Lawrence, C., 1988, Functional topography of band 3: A specific structural alteration linked to functional aberrations in human red cells, Proc. Natl. Acad. Sci. USA 85: 492–496.PubMedCrossRefGoogle Scholar
  53. Khansari, N., and Fudenberg, H. H., 1983, Immune elimination of aging platelets by autologous monocytes: Role of membrane-specific autoantibody, Eur. J. Immunol. 13: 990–994.PubMedCrossRefGoogle Scholar
  54. Khansari, N., and Fudenberg, H. H., 1984, Phagocytosis of senescent erythrocytes by autologous monocytes: Requirement of membrane-specific autologous IgG for immune elimination of aging red blood cells, Cell. Immunol. 78: 114–121.CrossRefGoogle Scholar
  55. Khansari, N., Springer, G. F., Merler, E., and Fudenberg, H. H., 1983, Mechanisms for the removal of senescent human erythrocytes from circulation: Specificity of the membrane-bound immunoglobulin, J. Mech. Aging Dev. 21: 49–58.CrossRefGoogle Scholar
  56. Kliman, H. J., and Steck, T. L., 1975, Association of glyceraldehyde-phosphate dehydrogenase with the human red cell membrane: A kinetic analysis, J. Biol. Chem. 255: 6314–6321.Google Scholar
  57. Lepke, S., Fasold, H., Pring, M., and Passow, H. J., 1976, A study of the relationship between inhibition of anion exchange and binding to the red blood cell membrane of 4,4’-diisothio-cyano-2,2’-disulfonic acid (DIDS) and its dihydro-derivative (H2DIDS), J. Membr. Biol. 29: 147.PubMedCrossRefGoogle Scholar
  58. Low, P. S., Waugh, S. ML, Zinke, K., and Drenckhahn, D., 1985, The role of hemoglobin denaturation and band 3 clustering in red blood cell aging, Science 227: 531–533.PubMedCrossRefGoogle Scholar
  59. Lutz, H. U., 1983, in: Red Cell Membrane Glycosylates and Related Genetic Markers (Cartrou, Rayer, and Salumou, eds.), Librairie Aurette, Paris, p. 273.Google Scholar
  60. Lutz, H. U., and Kay, M. M. B., 1981, An age-specific cell antigen is present on senescent human red blood cell membranes, Mech. Aging Dev. 15: 65–75.PubMedCrossRefGoogle Scholar
  61. Lutz, H., and Stringaro-wipf, G., 1984, Identification of a cell-age-specific antigen from human red blood cells, Biomed. Biochem. Acta 42: S117–S121.Google Scholar
  62. Lutz, H. U., Flepp, R., and Stringaro-wipf, G., 1984, Naturally occurring autoantibodies to exoplasmic and cryptic regions of band 3 protein, the major integral membrane protein of human red blood cells, J. Immunol. 133: 2610–2618.PubMedGoogle Scholar
  63. McCay, P. B., and King, M. M., 1980, Vitamin E: Its role as a biologic free radical scavenger and its relationship to the microsomal mixed-function oxidase, in: Vitamin E: A Comprehensive Treatise ( L. Machlin, ed.), Dekker, New York, pp. 289–317.Google Scholar
  64. Menzel, D. B., 1980, Protection against environmental toxicants, in: Vitamin E: A Comprehensive Treatise (L. Machlin, ed. ), New York, pp. 473–494.Google Scholar
  65. Morrison, M., Mueller, T. J., and Edwards, H. H., 1981, Protein architecture of the erythrocyte membrane, in: The Function of Red Blood Cells: Erythrocyte Pathobiology ( D. F. M. Wallach, ed.), Liss, New York, pp. 17–34.Google Scholar
  66. Mueckler, M., Caruso, C., Baldwin, S. A., Panico, M., Blench, I., Morris, H. R., Allard, W. J., Lienhard, G. E., and Lodish, H. F., 1985, Sequence and structure of a human glucose transporter, Science 229: 941–945.PubMedCrossRefGoogle Scholar
  67. Mueller, T. J., and Morrison, M., 1977, Detection of a variant of protein 3, the major transmembrane protein of the human erythrocyte, J. Biol. Chem. 252: 6573–6576.PubMedGoogle Scholar
  68. Petz, L. D., Yam, P., Wilkinson, L., Garratty, G., Lubin, B., and Mentzer, W., 1984, Proteolytic dissection of band 3, the predominant transmembrane polypeptide of the human erythrocyte membrane, Blood 64: 301–304.PubMedGoogle Scholar
  69. Ramjeesingh, M., and Rothstein, A., 1982, The location of a chymotrypsin cleavage site and of other sites in the primary structure of the 17,000-Dalton transmembrane segment of band 3, the anion transport protein of red cell, Membr. Biochem. 4: 259–269.PubMedCrossRefGoogle Scholar
  70. Salhany, J. M., and Shaklai, N., 1979, Functional properties of human hemoglobin bound to the erythrocyte membrane, Biochemistry 18: 893–899.PubMedCrossRefGoogle Scholar
  71. Sayare, M., Fikiet, M., and Paulus, J., 1982, Effect of Vitamin E on the binding of hemoglobin to the red cell membrane, Ann. NY Acad. Sei. 393: 251–261.CrossRefGoogle Scholar
  72. Shapiro, S. S., Mott, D. J., and Machlin, L. J., 1982a, Altered binding of glyceradehyde-3-phosphate to its binding site Vitamin E deficient red blood cells, Nutr. Rep. Int. 25: 507–517.Google Scholar
  73. Shapiro, S. S., Mott, D. J., and Machlin, L. J., 1982b, Alterations of enzymes in red blood cell membranes in Vitamin E deficiency, Ann. NY Acad. Sei. 393: 263–276.CrossRefGoogle Scholar
  74. Singer, J. A., Jennings, L. K., Jackson, C. W., Dockter, M. E., Morrison, M., and Walker, W. S., 1986, Erythrocyte homeostasis: Antibody-mediated recognition of the senescent state by macrophages, Proc. Natl. Acad. Sei. USA 83: 5498–5501.CrossRefGoogle Scholar
  75. Smalley, C. E., and Tucker, E. M., 1983, Blood group A antigen site distribution and immunoglobulin binding in relation to red cell age, Br. J. Haematol. 54: 209–219.PubMedCrossRefGoogle Scholar
  76. Steck, T. L., 1974, The organization of proteins in human red blood cell membranes, J. Cell. Biol. 62: 1–19.PubMedCrossRefGoogle Scholar
  77. Steck, T. L., 1978, The band 3 protein of the human red cell membrane: A review, J. Supramol. Struct. 8: 311–324.PubMedCrossRefGoogle Scholar
  78. Steck, T. L., Ramos, B., and Strapazon, E., 1976, Increased IgG molecules bound to the surface of red blood cells of patients with sickle cell anemia, Biochemistry 15: 1153–1161.PubMedCrossRefGoogle Scholar
  79. Strapazon, E., and Steck, T. L., 1977, Interaction of the adolase and membrane of human erythrocytes, Biochemistry 16: 2966–2971.PubMedCrossRefGoogle Scholar
  80. Tannert, C. H., 1978, Untersuchungen zum altern roter blutzellen, Ph.D. dissertation, Humbolt University, Berlin.Google Scholar
  81. Vomel, T. H., and Piatt, D., 1981, Phagocytic activity of the reticulohistiocyte system in rabbits after splenectomy and activation with ink, Mech. Aging Dev. 17: 267–273.PubMedCrossRefGoogle Scholar
  82. Walker, W. S., Singer, J. A., Morrison, M., and Jackson, C. W., 1984, Preferential phagocytosis of in vivo aged murine red blood cells by a macrophage-like cell line, Br. J. Haematol. 58: 259–266.PubMedCrossRefGoogle Scholar
  83. Waugh, S., Willardson, B. M., Kahan, R., Labotka, R., and Low, P. S., 1986, Heinz bodies induce clustering of band 3, glycophorin, and ankyrin in sickle cell erythrocytes, J. Clin. Invest. 78:155–1160.Google Scholar
  84. Wegner, G., Tannert, C. H., Maretzki, D., Schossler, W., and Strauss, D., 1980, Abstracts of the Ninth International Symposium on Structure and Function of Erythroid Cells, Berlin, p. 57.Google Scholar

Copyright information

© Plenum Press, New York 1990

Authors and Affiliations

  • Marguerite M. B. Kay
    • 1
    • 2
    • 3
  1. 1.Department of MedicineTexas A&M University, and Teague Veterans CenterTempleUSA
  2. 2.Department of Medical Biochemistry and GeneticsTexas A&M University, and Teague Veterans CenterTempleUSA
  3. 3.Department of Medical Microbiology and ImmunologyTexas A&M University, and Teague Veterans CenterTempleUSA

Personalised recommendations