X-ray and Neutron Scattering Studies of Superionics

  • C. R. A. Catlow
Part of the NATO ASI Series book series (NSSB, volume 199)

Abstract

X-ray and neutron scattering techniques play a central role in current materials science research. The importance of crystallographic studies using Bragg scattering of X-rays and neutrons is obvious; but elastic diffuse scattering is also a valuable technique in the study of disordered materials. Moreover, inelastic scattering of neutrons yields unique information on the dynamics of the system studied. In the present chapter we review these techniques with emphasis on their application to superionics. We will consider first a number of comparative issues in the field of diffraction: these issues will relate to the types of samples and types of sources that are used in contemporary studies. We consider next a number of problems relating to analysis of diffraction data on high temperature materials, which we follow by a discussion of diffuse scattering and the information which we can derive from such data. We then describe a range of applications of Bragg and diffuse scattering to the study of structural properties of superionics.

Keywords

Enthalpy Lithium Zeolite Arsenate Fluoride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Hutchings M.T., Clausen K., Dickens M.H., Hayes W., Kjems K.J., Schnabel P.G. and Smith C., J. Phys. C., 17, 3903 (1984).ADSCrossRefGoogle Scholar
  2. (2).
    Rietveld H.M., J. Appl. Crystallog. 2, 65 (1969).CrossRefGoogle Scholar
  3. (3).
    Cheetham A.K. and Taylor J.C., J. Solid State Chem. 21, 253 (1977).ADSCrossRefGoogle Scholar
  4. (4).
    High Resolution Powder Diffraction (ed Catlow C.R.A.), Materials Science Forum vol 9 (1986).Google Scholar
  5. (5).
    Cheetham A.K. in ‘High Resolution Powder Diffraction’ (ed Catlow C.R.A.), Materials Science Forum vol 9 p 103 (1986).Google Scholar
  6. (6).
    Catlow C.R.A. and Greaves G.N. Chemistry in Britain, 22, 8061 (1986).Google Scholar
  7. (7).
    Skelton E.F., Physics Today 37, 44 (1984).CrossRefGoogle Scholar
  8. (8).
    Windsor C.G. ‘Pulsed Neutron Scattering’ (Taylor anad Francis; London), 1981.Google Scholar
  9. (9).
    Werner P.E., Erickson L. and Westdahl M., J. Appl. Cryst. 18, 367 (1985).CrossRefGoogle Scholar
  10. (10).
    Kuhs W.F. Acta Cryst. A39, 148 (1983).Google Scholar
  11. (11).
    Johnson C.K. and Levy H.A. International Tables for X—Ray Crystallography vol IV, p 311, Birmingham; Kynoch Press (1974).Google Scholar
  12. (12).
    Zucker Y.H. and Schulz H., Acta Cryst. A38, 563 (1982).Google Scholar
  13. (13).
    Kuznetsov P.I., Stratonovich R.L. and Tikhonov V.I., Theory Probab. Its Appl. (USSR) 5, 80 (1960).MATHCrossRefGoogle Scholar
  14. Fender B.E.F. in ‘Thermal Neutron Scattering’ (ed Willis B.T.M.)(AERE Harwell) p 250 (1972).Google Scholar
  15. (15).
    Fender B.E.F. and Wright A., J. Phys. C. 10, 2261 (1977).ADSCrossRefGoogle Scholar
  16. (16).
    Mahan G.D. and Roth W.L. (eds) Superionic Conductors’ (Plenum Press; New York) (1977).Google Scholar
  17. (17).
    Vashishta P., Mundy J.N. and Shenoy G.K., (eds), Fast Ion Transpsort in Solids (North Holland; Amsterdam) (1979).Google Scholar
  18. (18).
    Bates J.B. and Farrington G.C. (eds) ‘Fast Ion Transport in Solids’ (North Holland; Amsterdam) (1981).Google Scholar
  19. (19).
    Kleitz M., Sapoval B. and Chabre Y. (eds) ‘Solid State Ionics-83’ (North Holland; Amsterda,) (1983).Google Scholar
  20. Solid State Ionics. vol. 18/19 (1986).Google Scholar
  21. (21).
    Harwig H.A., Z. Anorg. Allg. Chem. 444, 151 (1978).CrossRefGoogle Scholar
  22. (22).
    Battle P.D., Catlow C.R.A., Drennan J. and Murray A.D. J. Phys. C. 16, L561 (1983).ADSCrossRefGoogle Scholar
  23. (23).
    Battle P.D., Catlow C.R.A., Heap J.W. and Moroney L.M., J. Solid State Chem. 63, 8 (1986).ADSCrossRefGoogle Scholar
  24. (24).
    Fitch A.N. in High Resolution Powder Diffraction (ed Catlow C.R.A.) Materials Science Forum vol 9, p 113 (1986).Google Scholar
  25. (25).
    Shilton M.G. and Howe A.T., Mat. Res. Bull. 12, 701 (1977).CrossRefGoogle Scholar
  26. (26).
    Howe A.T. and Shilton M.G., J. Solid State Chem., 34, 149 (1980).ADSCrossRefGoogle Scholar
  27. (27).
    Gordon R.E., Strange J.H. and Halstead T.K., Solid State Comm. 31, 995 (1979).ADSCrossRefGoogle Scholar
  28. (28).
    Halstead T.K., Boden N., Clark L.D. and Clarke C.G., J. Solid State Chem. 47, 225 (1983).ADSCrossRefGoogle Scholar
  29. (29).
    Poinsignon C., Fitch A.N. and Fender B.E.F., Solid State Ionics 9 &10, 1049 (1983).Google Scholar
  30. (30).
    Morosin, B., Acta Cryst, B34, 3732 (1978).Google Scholar
  31. (31).
    Morosin B., Phys. Lett., 65A, 53 (1978).ADSGoogle Scholar
  32. (32).
    Bernard L., Fitch A.N., Howe A.T., Wright, A.F. and Fender B.E.F., J. Chem. Soc. Chem. Comm. 784 (1981).Google Scholar
  33. (33).
    Fitch A.N., Bernard L., Howe A.T., Wright A.F. and Fender B.E.F., Acta Cryst. C39, 159 (1983).Google Scholar
  34. (34).
    Shilton M.G. and Howe A.T., J. Solid State Chem. 34, 137 (1980).ADSCrossRefGoogle Scholar
  35. (35).
    Howe A.T. and Shilton M.G., J. Solid State Chem. 28, 345 (1979).ADSCrossRefGoogle Scholar
  36. (36).
    Thomas J.O. and Liminga R., Acta Cryst. B34, 3686 (1978).Google Scholar
  37. (37).
    Bernard L., Fitch A.N., Wright A.F., Fender B.E.F. and Howe A.T., Solid State Ionics, 5, 459 (1981).CrossRefGoogle Scholar
  38. (38).
    Kreuer K.D., Rabenau A. and Weppner W., Angew. Chem. Int. Ed. Engl. 21, 208 (1982).CrossRefGoogle Scholar
  39. (39).
    Kreuer K.D., Rabenau A. and Messer R., Appl. Physics, A32, 155 (1983).ADSGoogle Scholar
  40. (40).
    Krogh Andersen E., Krogh Andersen I.G., Simonsen K.E., Shau E., Lundsgaard J.S. and Mailing J. in Proceedings of the 2nd Conference on Solid State Protonic Conduction, eds Goodenough J.B., Jensen J. and Kletz M., Odense University Press, Odense, 253 (1983).Google Scholar
  41. (41).
    de Benyacar M.A.R. and de Abelado M.J., Am. Mineral. 102, 763 (1983).Google Scholar
  42. (42).
    de Benyacar M.A.R. and de Dussel H.L., Ferroelectrics 9, 241 (1975).CrossRefGoogle Scholar
  43. (43).
    de Benyacar M.A.R. and de Dussel H.L., Ferroelectrics 17, 469 (1978).CrossRefGoogle Scholar
  44. (44).
    Shilton M.G. and Howe A.T., J. Chem. Soc. Chem. Comm., 194 (1979).Google Scholar
  45. (45).
    Fitch A.N., Wright A.F. and Fender B.E.F., Acta Cryst. B38, 2546 (1982).Google Scholar
  46. (46).
    Thomas M.W. and Bendall P.J., Acta Cryst. A34, S351 (1978).Google Scholar
  47. (47).
    Bendall P.J., Fitch A.N. and Fender B.E.F., J. Appl. Cryst. 16, 164 (1983).CrossRefGoogle Scholar
  48. (48).
    Kearley G.J., Fitch A.N. and Fender B.E.F., J. Mol. Struc. 125, 229 (1984).ADSCrossRefGoogle Scholar
  49. (49).
    Dworkin A.S. and Bredig M.A., J. Phys. Chem. 72, 1277 (1968).CrossRefGoogle Scholar
  50. (50).
    Faraday M. Experimental Researches in Electricity (R. & J.E. Taylor, London), vol. I, p 426 (1839).Google Scholar
  51. (51).
    Derrington C.E., Navrotsky A. and O’Keele M., Solid State Comm. 18, 47 (1976).ADSCrossRefGoogle Scholar
  52. (52).
    Chadwick A.V., Radiation Effects 74, 17 (1983).CrossRefGoogle Scholar
  53. (53).
    Carr V.M., Chadwick A.V. and Figueroa D.R., J. Phys. (Paris) 37, C7–337 (1976).CrossRefGoogle Scholar
  54. (54).
    Figueroa D.R., Chadwick A.V. and Strange J.H., J. Phys. C. 11, 55 (1978).ADSCrossRefGoogle Scholar
  55. (55).
    Carr V.M., Chadwick A.V. and Saghafian R., J. Phys. C. 11, L637 (1978).ADSCrossRefGoogle Scholar
  56. (56).
    Chadwick A.V., Kirkwood F.G. and Saghafian R., J. Phys. (Paris) 41, C6–216 (1980).CrossRefGoogle Scholar
  57. (57).
    Azimi A., Carr V.M., Chadwick A.V., Kirkwood F.G. and Saghafian R., J. Phys. Chem. Solids. 45, 23 (1984).ADSCrossRefGoogle Scholar
  58. (58).
    Matzke, Hj. J. Mater. Sci., 5, 831 (1970).ADSCrossRefGoogle Scholar
  59. (59).
    Rice M.J., Strassler S. and Toombs G.A., Phys. Rev. Lett., 32, 596 (1974).ADSCrossRefGoogle Scholar
  60. (60).
    Huberman, B.A., Phys. Rev. Lett. 32, 1000 (1974).ADSCrossRefGoogle Scholar
  61. (61).
    Catlow C.R.A., Comins J D, Germano F.A., Harley R.T. and Hayes W., J. Phys. C. 11, 3197 (1978).ADSCrossRefGoogle Scholar
  62. (62).
    Catlow C.R.A., Comments on Solid State Physics, 9, 157 (1980).Google Scholar
  63. (63).
    Cheetham A.K., Fender B.E.D. and Cooper M.J., J. Phys. C. 4, 3107 (1971).ADSCrossRefGoogle Scholar
  64. (64).
    Willis B.T.M., Proc. Brit. Ceram. Soc. 1, 9 (1963).Google Scholar
  65. (65).
    Willis B.T.M., J. Phys. (Paris) 25, 431 (1964).CrossRefGoogle Scholar
  66. (66).
    Gillan M.J., J. Phys. C. 19, 3391 (1986).ADSCrossRefGoogle Scholar
  67. (67).
    Gillan M.J., to be published.Google Scholar
  68. (68).
    Bachman R. and Schulz H., Solid State Ionics 9/10, 521 (1983).CrossRefGoogle Scholar
  69. (69).
    Dickens M.H., Hayes W., Schnabel P., Hutchings M.T., Lechner R.E. and Renkner B., J. Phys. C. 16, Ll (1983).ADSCrossRefGoogle Scholar
  70. (70).
    Gillan M.J. and Dixon M., J. Phys. C. 13, 1901 (1980).ADSCrossRefGoogle Scholar
  71. (71).
    Dixon M. and Gillan M.J., J. Phys. C. 13, 1919 (1980).ADSCrossRefGoogle Scholar
  72. (72).
    Allnatt A.N., Chadwick A.V. and Jacobs P.W.H. Proc. Roy. Soc. A410, 385 (1987).ADSGoogle Scholar
  73. (73).
    Dickens M.H., Hayes W., Hutchings M.T. and Smith C., J. Phys. C. 15, 4043 (1982).ADSCrossRefGoogle Scholar
  74. (74).
    Hutchings M.T., A.I.P. Conf. Proc. No. 89, 209 (1982).Google Scholar

Copyright information

© Plenum Press, New York 1989

Authors and Affiliations

  • C. R. A. Catlow
    • 1
  1. 1.Department of ChemistryUniversity of KeeleKeele, StaffsUK

Personalised recommendations