Skip to main content

Multiphase and Polycrystalline Fast Ion Conductors

  • Chapter
Book cover Science and Technology of Fast Ion Conductors

Part of the book series: NATO ASI Series ((NSSB,volume 199))

Abstract

Starting from simple (e.g. binary) compounds, the usual strategy of improving the ionic conductivity consists of investigating modified structures(α-AgI, glasses) to form (single phase) multicomponent materials (RbAg4I5 Nasicon, Zr1−xCaxO2−x). A special case of the latter is the well-known procedure of classical (homogeneous) doping where small amounts of dopants are added (e.g. AgCl(+CdC12)) in order to influence transport properties rather than to disturb structural properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. C. Liang, J. Electrochem. Soc 120: 1289 (1973)

    Article  Google Scholar 

  2. J. B. Wagner Jr., Mater. Res. Bull. 15: 1691 (1980)

    Article  Google Scholar 

  3. J. Maier, J. Electrochem. Soc. 134: 1524 (1987)

    Article  Google Scholar 

  4. J. Maier, Mater. Phys. Chem. 17: 485 (1987)

    Article  ADS  Google Scholar 

  5. F. W. Poulsen, in: “Transport-structure Relations in Fast Ion and Mixed Conductors”, F. W. Poulsen et al., eds., Risø, Roskilde, 1985, pp.67

    Google Scholar 

  6. K. Shahi, and J. B. Wagner Jr., J. Solid State Chem. 42:107 (1982)

    Article  ADS  Google Scholar 

  7. J. Maier, Solid State Ionics 18/19: 1141 (1986)

    Article  Google Scholar 

  8. J. Maier, Mater. Res. Bull. 20: 383 (1985)

    Article  Google Scholar 

  9. J. Maier, and B. Reichert, Ber. Bunsenges. Phys. Chem. 90:666 (1986)

    Google Scholar 

  10. P. Chowdhary, and J. W. Wagner Jr., Mater. Lett. 3:78 (1985)

    Article  Google Scholar 

  11. J. Maier, Mater. Sci. Monogr. 28A: 415 (1985)

    Google Scholar 

  12. J. Maier, J. Phys. Chem. Solids 46: 300 (1985); loc.cit.5, 153 (1985)

    ADS  Google Scholar 

  13. J. Maier, Ber. Bunsenges. Phys. Chem. 89: 355 (1985)

    Google Scholar 

  14. J. Maier, Ber. Bunsenges. Phys. Chem. 90: 26 (1986)

    Google Scholar 

  15. J. Maier, Solid State Ionics 23: 59 (1987)

    Article  Google Scholar 

  16. J. Corish, and P. W. M. Jacobs, Surf. Def. Prop. Solids 2:160 (1973)

    Article  Google Scholar 

  17. J. Maier, Ber. Bunsenges. Phys. Chem. 88: 1057 (1984)

    Google Scholar 

  18. J. Maier, to be published

    Google Scholar 

  19. N. Dudney, J. Am. Ceram. Soc. 70: 65 (1987)

    Article  Google Scholar 

  20. J. Maier, S. Prill, and B. Reichert, to be published

    Google Scholar 

  21. E. A. Daniels, and S. M. Rao, Z. Phys. Chem. N. F. 137: 243 (1983)

    Google Scholar 

  22. K. Tanabe, in “Catalysis, Science and Technology (Vol.2), J. R. Anderson, and M. Boudart, eds., Springer, Berlin (1983).

    Google Scholar 

  23. J. A. Schwarz, C. T. Driscolland, A. K. Bhanot, J. Colloid Interface Sci. 97: 55 (1984)

    Article  Google Scholar 

  24. W. Göpel, Progr. Surf. Sci. 20:1 (1986)

    ADS  Google Scholar 

  25. T. Jow, and J. B. Wagner Jr., J. Electrochem. Soc. 126:1963 (1979)

    Article  Google Scholar 

  26. A. M. Stoneham, E. Wade, and J. A. Kilner, Mater. Res. Bull. 14: 661 (1979)

    Article  Google Scholar 

  27. A. Bunde, W. Dieterich, and E. Roman, Solid State Ionics 18/19: 147 (1985)

    Google Scholar 

  28. K. L. Kliewer, and J. S. Köhler, Phys. Rev. A 140: 1226 (1965)

    ADS  Google Scholar 

  29. R. B. Poeppel, and J. M. Blakely., Surf. Sci. 15: 507 (1969)

    Article  ADS  Google Scholar 

  30. H. Böttger, and V. V. Bryksin, “Hopping Conduction in Solids”, VCH, Berlin (1985)

    Google Scholar 

  31. F. W. Poulsen, and P. J. Miller, loc.cit. 5, 159 (1985)

    Google Scholar 

  32. A. Khandkar, and J. W. Wagner, Paper 833, Electrochem. Soc. Meeting, San Francisco (1983)

    Google Scholar 

  33. Y. M. Chiang, A. F. Henriksen, W. D. Kingery, and D. Finello, J. Am. Ceram. Soc. 64: 385 (1981)

    Article  Google Scholar 

  34. J. Wassermann, T. P. Martin, to be published;

    Google Scholar 

  35. J. Wassermann, T. P. Martin, and J. Maier to be published.

    Google Scholar 

  36. O. Nakamura, and J. B. Goodenough, Solid State Ionics 7:19 (1982)

    Google Scholar 

  37. B. I. H. Jackson, and D. A. Young, J. Phys. Chem. Solids 30: 1973 (1969)

    Article  ADS  Google Scholar 

  38. Y. Haven, Rec. Tray. Chien. 69: 1471 (1950)

    Article  Google Scholar 

  39. T. Asai, and S. Kawai, Solid State Ionics 20: 225 (1986).

    Article  Google Scholar 

  40. T. Asai, C.-H. Hu, S. Kawai, Mater. Res. Bull. 22: 269 (1987).

    Article  Google Scholar 

  41. J. L. Bjorkstam, D. Brinkmann, M. Mali, J. Roos, J. B. Phipps, and P. M. Skarstad, Solid State Ionics 18/19: 557 (1986);

    Article  Google Scholar 

  42. R. Dupree, J. R. Howells, A. Hooper, and F. W. Poulsen, Solid State Ionics 9/10: 131 (1983)

    Article  Google Scholar 

  43. A. Khandkar, and J. B. Wagner Jr., Solid State Ionics 20:267 (1986)

    Article  Google Scholar 

  44. K. Shahi, and J. B. Wagner Jr., J. Electrochem. Soc. 128:6 (1981)

    Article  ADS  Google Scholar 

  45. P. Chowdhary, V. B. Tare, and J. B. Wagner Jr., J. Electrochem. Soc. 132, 123 (1985)

    Article  Google Scholar 

  46. S. Fujitsu, M. Miyayama, K. Koumotu, H. Yanagida, and Kanazawa, J. Mater. Sci. 20: 2103 (1985);

    Article  ADS  Google Scholar 

  47. Fujitsu, K. Koumotu, and H. Yanagida, Solid State Ionics 18/19: 1146 (1986)

    Article  Google Scholar 

  48. N. Vaidehi, R. Akila, A. K. Shukla, and K. T. Jacob, Mater. Res. Bull. 21: 909 (1986)

    Article  Google Scholar 

  49. A. Khandkar, V. B. Tare, and J. B. Wagner Jr., Rev. Chin. Min. 23: 274 (1986)

    Google Scholar 

  50. T. L. Wen, R. A. Huggins, A. Rabenau, and W. Weppner, Rev. Chin. Min. 20: 643 (1983)

    Google Scholar 

  51. A. Khandkar, V. B. Tare, A. Navrotsky, and J. B. Wagner Jr., J. Electrochem. Soc. 131: 2683 (1984)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Plenum Press, New York

About this chapter

Cite this chapter

Maier, J. (1989). Multiphase and Polycrystalline Fast Ion Conductors . In: Tuller, H.L., Balkanski, M. (eds) Science and Technology of Fast Ion Conductors. NATO ASI Series, vol 199. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0509-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0509-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7842-9

  • Online ISBN: 978-1-4613-0509-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics