The Green Flagellate Chlamydomonas

  • K. V. Kvitko


Green flagellates belonging to the genus Chlamydomonas are widely used as a model in experimental studies. Chlamydomonas is one of the more suitable unicellular eukaryotic organisms for studying cell differentiation with modern techniques. This is due to the relative simplicity of the structure allied with the presence of a wide range of cell organelles, as well as the availability of a considerable body of information on the physiology, biochemistry, and genetics of this organism. Another advantage is that well-developed culture procedures are available.


Strain 137C Chloroplast Structure Mixotrophic Condition Synchronous Culture Chlamydomonas Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. S. Abros’kina, L. M. Vorob’eva, and K. V. Kvitko, “Chlorophyll luminescence in mutants of Chlorella and ChlamydomonasFiziol. Rast. 26, 383 (1979).Google Scholar
  2. 2.
    V. Ya. Alexandrov, “Stimulation of flagellum recovery in Chlamydomonas eugametos after heat injury,” Arch. Protistenk. 124, 345 (1981).CrossRefGoogle Scholar
  3. 3.
    M. Baslerovä and J. Dvoräkovä, Algarum, Hepaticarum, Muscorumque in Culturis Collectio., Nakladat. Českosl. Akad. ved., Praha (1962).Google Scholar
  4. 4.
    W. Behn and C. G. Arnold, “Localization of extranuclear genes by investigations of the ultrastructure in Chlamydomonas reinhardii,” Arch. Microbiol. 92, 83 (1973).Google Scholar
  5. 5.
    E. P. Bers, “Effect of cultivation conditions on productivity and certain physiological traits of Chlamydomonas reinhardii cells,” in: Experimental Algology [in Russian], Peterhof Biological Institute, Leningrad (1977).Google Scholar
  6. 6.
    P. Kh. Boyadzhiev, A. F. Smirnov, and K. V. Kvitko, “Microspectrophotometry of Chlamydomonas pigment mutants,” in: Control of Biosynthesis in Microorganisms [in Russian], Nauka, Krasnoyarsk (1973).Google Scholar
  7. 7.
    V. G. Bruce, “Mutants of the biological clock in Chlamydomonas reinhardiiGenetics 70, 537–548 (1972).PubMedGoogle Scholar
  8. 8.
    V. G. Bruce and N. C. Bruce, “Circadian clock-controlled growth cycle in Chlamydomonas reinhardii,” in: International Cell Biology 1980–1981, H. G. Schweiger (ed.), Verlag B., New York (1981).Google Scholar
  9. 9.
    T. Cavalier-Smith, “Electron microscopy of zygospore formation in Chlamydomonas reinhardii,” Protoplasma 87, 297 (1976).PubMedCrossRefGoogle Scholar
  10. 10.
    V. I. Chemerilova and K. V. Kvitko, “Study of mutations modifying pigmentation in Chlamydomonas reinhardii strains at various ploidity,” Genetika 11, 44–49 (1976).Google Scholar
  11. 11.
    K. S. Chiang, “Replication, transmission, and recombination of cytoplasmic DNA in Chlamydomonas reinhardii,” in; Autonomy and Biogenesis of Mitochondria and Chloroplasts, North Holland Publishing Co., Amsterdam (1971).Google Scholar
  12. 12.
    A. S. Chunaev, “Genetics of photosynthesis in Chlamydomonas reinhardii,” Usp. Sovrem. Genet. 12, 63–92 (1984).Google Scholar
  13. 13.
    A. S. Chunaev, V. G. Ladygin, T. A. Gavrilenko, L. P. Krela, and G. A. Kornyushenko, “Inheritance of the trait ‘absence of chlorophyll b’ and the variability of the light-collecting complex in the meiotic progeny C-48 of Chlamydomonas reinhardii,” Genetika 17, 2013–2024 (1981).Google Scholar
  14. 14.
    A. W. Coleman, “Sexuality,” in: Physiology and Biochemistry of Algae, Academic Press, New York-London (1962).Google Scholar
  15. 15.
    Culture Collection of Algae and Protozoa, List of Strains, Cambridge University, Cambridge (1976).Google Scholar
  16. 16.
    D. R. Davies and K. Roberts, “Genetics of cell wall synthesis in Chlamydomonas reinhardii,” in: The Genetics of Algae, R. A. Lewin (ed.), Oxford (1976).Google Scholar
  17. 17.
    V. A. Dogel, Invertebrate Zoology [in Russian], Vysshaya Shkola, Moscow (1981).Google Scholar
  18. 18.
    H. Ettl, “Chlamydomonas als geeigneter Modellorganismus für vergleichende cytomorphologische Untersuchungen,” Algol. Stud. 5, 259 (1971).Google Scholar
  19. 19.
    H. Ettl, “Die Gattung Chlamydomonas Ehrenberg,” Beih. Nova Hedwigia 49, 1–22 (1976).Google Scholar
  20. 20.
    J. Friedman, A. L. Colwin, and L. H. Colwin, “Fine structural aspects of fertilization in Chlamydomonas reinhardiiJ. Cell Sci. 3, 115–128 (1968).Google Scholar
  21. 21.
    N. Gillham, “The uniparental inheritance in Chlamydomonas,” Am. Nat. 103, 355–387 (1969).CrossRefGoogle Scholar
  22. 22.
    U. W. Goodenough, “Sexual microbiology: mating reactions of Chlamydomonas reinhardii, Tetrahymena termophila and Saccharomyces cerevisiae,” in: Eukaryotic Microbial Cell, G. W. Gooday et al. (eds.), Cambridge University Press, Cambridge (1980).Google Scholar
  23. 23.
    U. W. Goodenough and R. P. Levine, “Chloroplast structure and function in ac-20, a mutant strain of Chlamydomonas reinhardii. III. Chloroplast ribosomes and membrane organization,” J. Cell Biol. 44, 547 (1970).PubMedCrossRefGoogle Scholar
  24. 24.
    C. S. Gowans, “Genetics of Chlamydomonas moewusii and Chlamydomonas eugametes” in: The Genetics of Algae, R. A. Lewin (ed.), Oxford (1976).Google Scholar
  25. 25.
    B. V. Gromov, “The collection of algae cultures of Leningrad University Biological Institute,” Tr. Peterhof. Biol. Inst. Leningr. Gos. Univ. 19, 125 (1965).Google Scholar
  26. 26.
    B. V. Gromov and N. N. Titova, “Culture collection of algae at the Microbiology Laboratory, Biological Institute, Leningrad State University,” in: Cultivation of Collection Strains of Algae [in Russian], Leningrad University Press, Leningrad (1983).Google Scholar
  27. 27.
    I. Gyurjian, G. Erdös, and A. H. Nagy, “Polypeptide composition of thylacoid membrane in pigment-deficient mutants of Chlamydomonas reinhardii” in: European Meeting on Molecular Genetics and Biology of Unicellular Algae, Liege (1980).Google Scholar
  28. 28.
    E. H. Harris, “Nuclear gene loci of Chlamydomonas reinhardii,” in: Genetic Maps, S. O’Brien (ed.), Vol. 5, National Cancer Inst. (1982).Google Scholar
  29. 29.
    S. H. Howell, W. J. Blaschko, and C. W. Drew, “Inhibitor effects during the cell cycle in Chlamydomonas reinhardii. Determination of transition points in asynchronous cultures,” J. Cell Biol. 67, 126 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    T. W. James, “Induced division synchrony in the flagellates,” in: Synchrony in Cell Division and Growth, Interscience, New York-London (1964).Google Scholar
  31. 31.
    R. F. Jones, “Physiology and biochemical aspects of growth and gametogenesis in Chlamydomonas reinhardii,” Ann. N.Y. Acad. Sci. 175, 648–659 (1970).CrossRefGoogle Scholar
  32. 32.
    N. V. Karapetyan, M. G. Rakhimberdieva, N. G. Bukhov, and I. Gyurjan, “Characterization of photosystems of Chlamydomonas reinhardii mutants differing in their fluorescence yield,” Photosynthetica 14, 48–54 (1980).Google Scholar
  33. 33.
    J. R. Kates, K. S. Chiang, and R. F. Jones, “Studies on DNA replication during synchronized vegetative growth and gametic differentiation in Chlamydomonas reinhardii,” Exp. Cell Res. 49, 121–135 (1968).PubMedCrossRefGoogle Scholar
  34. 34.
    K. B. Kvitko, “Biology and genetics of Chlamydomonas reinhardii 137C,” in: Experimental Algology [in Russian], Leningrad (1977).Google Scholar
  35. 35.
    K. Y. Kvitko and T. N. Borshevskaya, “Peterhof collection of pigmentation mutants of green algae,” in: Methods Used to Study the Structure of Photosynthetic Apparatus [in Russian], Pushchino-on-Oka (1972).Google Scholar
  36. 36.
    K. V. Kvitko and V. I. Chemerilova, “Adaptive significance of polyploidy in algae, chlamydomonads taken as an example,” in: Evolutionary Genetics [in Russian], Leningrad University Press, Leningrad (1982).Google Scholar
  37. 37.
    K. V. Kvitko, P. Kh. Boyadzhiev, A. S. Chunaev, B. T. Mukhamadiev, A. A. Baranov, and V. S. Saakov, “Genotypic and phenotypic variation of pigment-lipoprotein complex of the green algae mutants. 2. Study of the absorption spectra of mutants with altered response to illumination in Chlamydomonas reinhardii 137C,” in: Experimental Algology [in Russian], Leningrad (1977).Google Scholar
  38. 38.
    K. V. Kvitko, V. V. Tugarinov, Ph. T. Ho, A. S. Chunaev, E. E. Temper, and B. T. Mukhamediev, “Mutational analysis as a method of studying genotype structure of green algae,” in: Genetic Aspects of Photosynthesis, Yu. S. Nasyrov (ed.), Junk (1975).Google Scholar
  39. 39.
    K. V. Kvitko, VI. VI. Matveev, and A. C. Chunaev, “Motility and behavior of Chlamydomonas and their changes induced by mutations,” in: Motility and Behavior of Unicellular Animals [in Russian], Nauka, Leningrad (1978).Google Scholar
  40. 40.
    K. V. Kvitko, T. N. Borshchevskaya, A. S. Chunaev, and V. V. Tugarinov, “Peterhof’s genetical collection of strains of Chlorella, Scenedesmus, Chlamydomonas” in: Cultivation of Collection Strains of Algae [in Russian], Leningrad University Press, Leningrad (1983).Google Scholar
  41. 41.
    R. P. Levine, “Preparation and properties of mutant strains of Chlamydomonas reinhardii,” in: Methods in Enzymology, Vol. 23, Part A. Academic Press, New York-London (1971).Google Scholar
  42. 42.
    R. P. Levine and W. T. Ebersold, “Gene recombination in Chlamydomonas reinhardii,” Cold Spring Harbor Symp. Quant. Biol. 23, 395–410 (1958).Google Scholar
  43. 43.
    R. P. Levine and W. T. Ebersold, “Genetics and cytology of Chlamydomonas,” Annu. Rev. Microbiol. 14, 197¬216 (1960).PubMedCrossRefGoogle Scholar
  44. 44.
    R. P. Levine and U. Goodenough, “The genetics of photosynthesis and of the chloroplast in Chlamydomonas reinhardii,” Annu. Rev. Genet. 4,397¬407 (1970).CrossRefGoogle Scholar
  45. 45.
    R. A. Lewin, “The genetics of Chlamydomonas moewusii Gerloff,” J. Genet. 51, 543 (1953).CrossRefGoogle Scholar
  46. 46.
    R. A. Lewin, “Genetic control of flagellar activity in Chlamydomonas moewusii (Chlorophyta, Volvocales),” Phycologia 13, 45¬55 (1974).CrossRefGoogle Scholar
  47. 47.
    R. A. Lewin (ed.), The Genetics of Algae. Bot. Monographs, II, Oxford (1976).Google Scholar
  48. 48.
    R. Loppes, “Ethyl methane sulfonate: an effective mutagen in Chlamydomonas reinhardiiMol. Gen. Genet. 102, 299–231 (1968).CrossRefGoogle Scholar
  49. 49.
    R. Loppes, R. Motagne, and P. J. Strijkert, “Complementation of the Arg 7 locus in Chlamydomonas reinhardiiHeredity 28, 239–251 (1972).CrossRefGoogle Scholar
  50. 50.
    Y. Maynell and E. Maynell, Experimental Microbiology [Russian translation], Mir, Moscow (1967).Google Scholar
  51. 51.
    R. F. Matagne, R. Deltour, and L. Ledoux, “Somatic fusion between cell wall mutants of Chlamydomonas reinhardiiNature (London) 278, 344–346 (1979).CrossRefGoogle Scholar
  52. 52.
    F. Moewus, “Carotinoid derivative als geschlechtsbestimmende Stoffe von Algen,” Biol. Zbl. 60, 143–166 (1940).Google Scholar
  53. 53.
    G. M. Padilla and J. R. Cook, “The development of techniques for synchronizing flagellates,” in: Synchrony in Cell Division and Growth, Interscience, New York-London (1972).Google Scholar
  54. 54.
    J. Randell and D. Starling, “Genetic determinants of flagellum phenotype in Chlamydomonas reinhardii,” in: “The Genetics of the Spermatozoon,” Bogtrykkereit Vorum, Edinburgh-N.T.-Copenhagen.Google Scholar
  55. 55.
    R. A. Lewin (ed.), reprinted in The Genetics of Algae, Oxford (1976).Google Scholar
  56. 56.
    R. W. Rubin and P. Filner, “Adenosine-3′,5′-cyclic monophosphate in Chlamydomonas reinhardii: influence on flagellar function and regeneration,” J. Cell Biol. 56, 628–635 (1973).PubMedCrossRefGoogle Scholar
  57. 57.
    R. S. Ryan, D. Grant, Chiang Kwen-Sheng, and H. Swift, “Isolation of mitochondria and characterization of the mitochondrial DNA of Chlamydomonas reinhardii,” J. Cell Biol. 59, Pt. 2, 297a (1973a).Google Scholar
  58. 58.
    R. Sager, “Mendelian and non-Mendelian inheritance of streptomycin resistance in Chlamydomonas,” Proc. Natl. Acad. Sci. USA 40, 356–370 (1954).PubMedCrossRefGoogle Scholar
  59. 59.
    R. Sager and Z. Ramanis, “A genetic map of non-Mendelian genes in Chlamydomonas,” Proc. Natl. Acad. Sci. USA 65, 593–600 (1970).PubMedCrossRefGoogle Scholar
  60. 60.
    R. Sager and J. Tsubo, “Mutagenic effects of streptomycin in ChlamydomonasArch. Mikrobiol. 42, 159–175 (1962).PubMedCrossRefGoogle Scholar
  61. 61.
    R. Sager, Cytoplasmic Genes and Organelles, Academic Press, New York (1972).Google Scholar
  62. 62.
    I. A. Sakharov and K. V. Kvitko, Genetics of Microorganisms [in Russian], Leningr. Gos. Univ., Leningrad (1967).Google Scholar
  63. 63.
    E. T. Schmeisser, D. M. Baumgartel, and S. H. Howell, “Gametic differentiation in Chlamydomonas reinhardii: cell cycle dependency and rates in attainment of mating competency,” Dev. Biol. 31. 31–37 (1973).PubMedCrossRefGoogle Scholar
  64. 64.
    F. Schötz, H. Bathelt, C. G. Arnold, and O. Schimmer, “Die Architectur und Organization der Chlamydomonas-celle. Ergebnisse der Elektronenmikroskopie von Serienschnitten und der daraus resultierenden dreidimensionalen Reconstruktion,” Protoplasma 75, 229–254 (1972).PubMedCrossRefGoogle Scholar
  65. 65.
    D. Starling, “Complementation tests in closely’linked flagellar genes in Chlamydomonas reinhardii,” Genet. Res. 14, 343–347 (1969).PubMedCrossRefGoogle Scholar
  66. 66.
    R. C. Starr, “Algae cultures-sources and methods of cultivation,” in: Methods in Enzymology, Vol. 23, Part A, Academic Press, New York-London (1971).Google Scholar
  67. 67.
    R. C. Starr, “The culture collection of algae at University of Texas at Austin,” J. Phycol. 14, Suppl., 47–100 (1978).CrossRefGoogle Scholar
  68. 68.
    A. V. Stolbova, “Genetic analysis of pigment mutations of Chlamydomonas reinhardii,” Genetika 7, 90–94 (1971).Google Scholar
  69. 69.
    A. V. Stolbova, “Genetic analysis of pigment mutations in Chlamydomonas reinhardiiGenetika 8, 123–128 (1972).Google Scholar
  70. 70.
    A. V. Stolbova, “Genetic analysis of light-sensitive mutants of Chlamydomonas reinhardii” in: Genetic Aspects of Photosynthesis, Yu. S. Nasyrov and Z. Sestàk (eds.), Junk (1975).Google Scholar
  71. 71.
    R. Storms and P. J. Hastings, “A fine structure analysis of meiotic pairing in Chlamydomonas reinhardii,” Exp. Cell Res. 104, 39–46 (1977).PubMedCrossRefGoogle Scholar
  72. 72.
    S. Surzycki, “Synchronously grown cultures of Chlamydomonas reinhardii,” in: Methods in Enzymology, Vol. 23, Part A, Academic Press, New York- London (1971).Google Scholar
  73. 73.
    S. Surzycki, U. W. Goodenough, R. P. Levine, and J. J. Armstrong, “Nuclear and chloroplast control of chloroplast structure and function in Chlamydomonas reinhardii,” in: Control of Organelle Development, 24th Symposium in Experimental Biology, Cambridge University Press, Cambridge (1970).Google Scholar
  74. 74.
    J. S. Sussenbach and P. J. Strikert, “Arginine metabolism in Chlamydomonas reinhardii,” Eur. J. Biochem. 8, 403–412 (1969).PubMedCrossRefGoogle Scholar
  75. 75.
    D. P. Weeks and P. S. Collis, “Induction and synthesis of tubulin during the cell cycle and life cycle of Chlamydomonas reinhardii,” Dev. Biol. 69, 400–407 (1979).PubMedCrossRefGoogle Scholar

Copyright information

© Consultants Bureau, New York 1990

Authors and Affiliations

  • K. V. Kvitko

There are no affiliations available

Personalised recommendations