Visual Integration in Callosal Agenesis

  • A. David Milner
Part of the Advances in Behavioral Biology book series (ABBI, volume 42)


The visual system is wired up in a rather strictly lateralized fashion. Aside from a thin band of the retina (perhaps about 1 deg of visual angle) bordering the vertical meridian, information impinging on the right hemiretina is transmitted faithfully to targets on the right side of the brain, and similarly on the left. These retinofugal neurons synapse upon a number of lateralized structures in the thalamus [especially the pars dorsalis and pars ventralis of the lateral geniculate nucleus (LGNd and LGNv)], and in the midbrain [especially the superior colliculus (SC) and the pretectal nuclei]. From these subcortical structures, the principal route to the cerebral cortex is the direct one from the LGNd to the primary visual cortex (V1), but there are also substantial indirect ones. There are multiple routes from the midbrain visual areas to thalamic nuclei (notably within the pulvinar complex) and from there to secondary and tertiary cortical visual areas.


Corpus Callosum Superior Colliculus Anterior Commissure Simple Reaction Time Vertical Meridian 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aglioti, S., Berlucchi, G., Pallini, R., Rossi, G., and Tassinari, G., 1991, Interhemispheric transfer in patients with partial and total callosotomy, Third IBRO World Congress, Montreal, Canada (Abstract).Google Scholar
  2. Auroux, M. and Roussel, C., 1967, Relations neocorticales assurées par la commissure blanche antérieure chez le foetus humain. CR. Assoc. Anat. 137: 152–159.Google Scholar
  3. Barkovich, A.J. and Norman, D., 1988, Anomalies of the corpus callosum: correlation with further anomalies of the brain, Am. J. Roentgenol. 151: 171–179.Google Scholar
  4. Bashore, T.R., 1981, Vocal and manual reaction time estimates of interhemispheric transmission time, Psychol. Bull. 89: 352–368.PubMedCrossRefGoogle Scholar
  5. Berlucchi, G., 1972, Anatomical and physiological aspects of visual functions of corpus callosum, Brain Res. 37: 371–392.PubMedCrossRefGoogle Scholar
  6. Berlucchi, G., 1978, Interhemispheric integration of simple visuomotor responses, in: “Brain Mechanisms and Perceptual Awareness,” P.A. Buser and A. Rougeul-Buser, eds., Raven, New York.Google Scholar
  7. Berlucchi, G., Heron, W., Hyman, R., Rizzolatti, G., and Umilta, C., 1971, Simple reaction times of ipsilateral and contralateral hand to a lateralized visual stimulus, Brain 94: 419–430.PubMedCrossRefGoogle Scholar
  8. Bogen, J.E., Schultz, D.H., and Vogel, PJ., 1988, Completeness of callosotomy shown by magnetic resonance imaging in the long term, Arch. Neurol. 45: 1203–1205.PubMedGoogle Scholar
  9. Brown, W.S., 1991, Evoked potentials and bilateral field advantage in agenesis of the corpus callosum, Poster presented at IBRO Satellite Symposium on Callosal Agenesis, Quebec City, Que., Canada.Google Scholar
  10. Chalupa, L.M. and Abramson, B.P., 1988, Receptive-field properties in the tecto-and striate-recipient zones of the cat’s lateral posterior nucleus, Prog. Brain Res. 75: 85–94.PubMedCrossRefGoogle Scholar
  11. Chiarello, C. 1980, A house divided? Cognitive functioning with callosal agenesis, Brain Lang. 11: 128–158.PubMedCrossRefGoogle Scholar
  12. Clarke, J.M. and Zaidel, E., 1989, Simple reaction times to lateralized light flashes. Varieties of interhemispheric communication routes, Brain 112: 849–870.PubMedCrossRefGoogle Scholar
  13. Cooper, A.M. and Rogers, B.J., 1988, Midline stereopsis in agenesis acallosals. Neurosci. Lett. Suppl. 32: S112.Google Scholar
  14. Cowey, A. and Wilkinson, F., 1991, The role of the corpus callosum and extra striate visual areas in stereoacuity in macaque monkeys, Neuropsychologia 29: 465–479.PubMedCrossRefGoogle Scholar
  15. Demeter, S., Ringo, J.L., and Doty, R.W., 1988, Morphometric analysis of the human corpus callosum and anterior commissure, Hum. Neurobiol. 6: 219–226.PubMedGoogle Scholar
  16. Demeter, S., Rosene, D.L., and Van Hoesen, G.W., 1990, Fields of origin and pathways of the interhemispheric commissures in the temporal lobe of macaques, J. Comp. Neurol. 302: 29–53.PubMedCrossRefGoogle Scholar
  17. Denenberg, V.H., 1981, Hemispheric laterality in animals and the effects of early experience, Behay. Brain Sci. 4, 1–49.CrossRefGoogle Scholar
  18. DiStefano, M., Sauerwein, H.C., and Lassonde, M., 1992, Influence of anatomical factors and spatial compatibility on the stimulus-response relationship in the absence of the corpus callosum, Neuropsychologia 30: 177–185CrossRefGoogle Scholar
  19. Donoso, A. and Santander, M., 1982, Hemialexia y afasia hemianoptica en agenesia del cuerpo calloso, Rev. Chil. Neuro-Psiquiatr. 20: 137–144.Google Scholar
  20. Eacott, MJ. and Gaffan, D., 1989, Interhemispheric transfer of visual learning in monkeys with intact optic chiasm, Exp. Brain Res. 74: 348–352.PubMedCrossRefGoogle Scholar
  21. Edwards, S.B., 1977, The commissural projection of the superior colliculus in the cat, J. Comp. Neurol. 173: 23–40.PubMedCrossRefGoogle Scholar
  22. Ettlinger, G., Blakemore, C.B., Milner, A.D., and Wilson, J., 1972, Agenesis of the corpus callosum: a behavioural investigation, Brain 95: 327–346.PubMedCrossRefGoogle Scholar
  23. Foxman, B.T., Oppenheim, J., Petito, C.K., and Gazzaniga, M.S., 1986, Proportional anterior commissure area in humans and monkeys, Neurology 36: 1513–1517.PubMedGoogle Scholar
  24. Goldberg, M.E. and Robinson, D.L., 1978, The superior colliculus, in: “Handbook of Behavioral Neurobiology. Sensory Integration,” Vol. 1., R.B. Masterton, ed., Plenum Press, New York.Google Scholar
  25. Gordon, B., 1975, Superior colliculus: structure, physiology and possible functions, in: “Physiology,” Series 1, Vol. 3, C.C. Hunt, ed., Butterworth, London.Google Scholar
  26. Gross, C.G. and Mishkin, M., 1977, The neural basis of stimulus equivalence across retinal translation, in: “Lateralization in the Nervous System,” S. Hamad, R. Doty, J. Jaynes, L. Goldstein, and G. Krauthamer, eds., Academic Press, New York.Google Scholar
  27. Gross, C.G., Bender, D.B., and Mishkin, M., 1977, Contribution of the corpus callosum and the anterior commissure to visual activation of inferior temporal neurons, Brain Res. 131: 227–239.PubMedCrossRefGoogle Scholar
  28. Hamilton, C.R., 1982, Mechanisms of interocular equivalence, in: “Advances in the Analysis of Visual Behavior,” DJ. Ingle, M.A. Goodale, and R.J.W. Mansfield, eds., MIT Press, Cambridge.Google Scholar
  29. Hamilton, C. R. and Vermeire, B. A., 1986, Localization of visual functions with partially split-brain monkeys, in: “Two Hemispheres — One Brain: Functions of the Corpus Callosum,” F. Lepore, M. Ptito, and H.H. Jasper, eds., Alan R. Liss, New York.Google Scholar
  30. Holtzman, J.D., 1984, Interactions between cortical and subcortical visual areas: evidence from human commissurotomy patients, Vision Res. 24: 801–813.PubMedCrossRefGoogle Scholar
  31. Holtzman, J.D., Sidtis, J.J., Volpe, B.T., Wilson, D.H., and Gazzaniga, M.S., 1981, Dissociation of spatial information for stimulus localization and the control of attention, Brain 104: 861–872.PubMedCrossRefGoogle Scholar
  32. Jeeves, M.A., 1969, A comparison of interhemispheric transmission times in acallosals and normals, Psychon. Sci. 16: 245–246.Google Scholar
  33. Jeeves, M.A., 1979, Some limits to interhemispheric integration in cases of callosal agenesis and partial commissurotomy, in: Structure and Function of the Cerebral Commissures,” I.S. Russell, M.W. van Hof, and G. M. Berlucchi, eds., Macmillan, London.Google Scholar
  34. Jeeves, M.A., 1991, Stereo perception in callosal agenesis and partial callosotomy, Neuropsychologia 29: 19–34.PubMedCrossRefGoogle Scholar
  35. Jeeves, M.A. and Milner, A.D., 1987, Specificity and plasticity in interhemispheric integration: evidence from callosal agenesis, in: “The Duality and Unity of the Brain,” D. Ottoson, ed., Macmillan, London.Google Scholar
  36. Jouandet, M.L., 1982, Neocortical and basal telencephalic origins of the anterior commissure of the cat, Neuroscience 7: 1731–1752.PubMedCrossRefGoogle Scholar
  37. Jouandet, M.L. and Gazzaniga, M.S., 1979, Cortical field of origin of the anterior commissure of the rhesus monkey, Exp. Neurol. 66: 381–397.PubMedCrossRefGoogle Scholar
  38. Karnath, H.O., Schumacher, M., and Wallesch, C.W., 1991, Limitations of interhemispheric extracallosal transfer of visual information in callosal agenesis, Cortex 27: 345–350.PubMedGoogle Scholar
  39. Kutas, M., Hillyard, S.A., and Gazzaniga, M.S., 1988, Processing of semantic anomaly by right and left hemispheres of commissurotomy patients: evidence from event-related potentials, Brain 111: 553–576.PubMedCrossRefGoogle Scholar
  40. Lamantia, A.S. and Rakic, P., 1990, Cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey, J. Comp. Neurol. 291: 520–537.PubMedCrossRefGoogle Scholar
  41. Lassonde, M., 1986, The facilitatory influence of the corpus callosum on intrahemispheric processing, in: “Two Hemispheres - One Brain: Functions of the Corpus Callosum,” F. Lepore, M. Ptito, and H.H. Jasper, eds., Alan R. Liss, New York.Google Scholar
  42. Lemire, R.J., Loeser, J.D., Leech, R.W., and Alvord, E.C., 1975, “Normal and Abnormal Development of the Human Nervous System,” Harper & Row, Hagerstown, MD.Google Scholar
  43. Lia, B., Snider, C.J., and Chalupa, L.M., 1988, The nasotemporal division of the retinal ganglion cell decussation pattern in the fetal rhesus monkey. Soc. Neurosci. Abstr. 14: 458.Google Scholar
  44. Lines, C.R., 1984, Nasotemporal overlap investigated in a case of agenesis of the corpus callosum, Neuropsychologia 22: 85–90.PubMedCrossRefGoogle Scholar
  45. Lines, C.R. and Milner, A.D., 1983, Nasotemporal overlap in the human retina investigated by means of simple reaction time to lateralized light flash, Exp. Brain Res. 50: 166–172.PubMedCrossRefGoogle Scholar
  46. Lines, C.R., Rugg, M.D., and Milner, A.D., 1984, The effect of stimulus intensity on visual evoked potential estimates of interhemispheric transmission time, Exp. Brain Res. 57: 89–98.PubMedCrossRefGoogle Scholar
  47. Loeser, J.D. and Alvord, E.C., 1968, Clinicopatholological correlations in agenesis of the corpus callosum, Neurology 18: 745–756.PubMedGoogle Scholar
  48. Martin, A., 1985, A qualitative limitation on visual transfer via the anterior commissure, Brain 108: 43–63.PubMedCrossRefGoogle Scholar
  49. Mcllwain, J.T., 1991, Visual input to commissural neurons of the cat’s superior colliculus, Vis. Neurosci. 17: 389–393.CrossRefGoogle Scholar
  50. McKeever, W.F., Sullivan, K.F., Ferguson, S.M., and Rayport, M., 1981, Typical cerebral hemisphere disconnection deficits following corpus callosum section despite sparing of the anterior commissure, Neuropsychologia 19: 745–755.PubMedCrossRefGoogle Scholar
  51. Milner, A.D., 1982, Simple reaction times to lateralized visual stimuli in a case of callosal agenesis, Neuropsychologia 20: 411–419.PubMedCrossRefGoogle Scholar
  52. Milner, A.D., 1983, Neuropsychological studies of callosal agenesis, Psychol. Med. 13: 721–725.PubMedCrossRefGoogle Scholar
  53. Milner, A.D., 1986, Chronometric analysis in neuropsychology, Neuropsychologia 24: 115–128.PubMedCrossRefGoogle Scholar
  54. Milner, A.D., 1986, Chronometric analysis in neuropsychology, Neuropsychologia 24: 115–128.PubMedCrossRefGoogle Scholar
  55. Milner, A.D. and Jeeves, M.A., 1979, A review of behavioural studies of agenesis of the corpus callosum, in: “Structure and Function of the Cerebral Commissures,” I.S. Russell, M.W. van Hof, and G. M. Berlucchi, eds., Macmillan, London.Google Scholar
  56. Milner, A.D., and Jeeves, M.A., 1981, The functions of the corpus callosum in infancy and adulthood, Beh. Brain Sci. 4: 30–31.CrossRefGoogle Scholar
  57. Milner, A.D., and Lines, C.R., 1982, Interhemispheric pathways in simple reaction time to lateralized light flash, Neuropsychologia 20: 171–179.PubMedCrossRefGoogle Scholar
  58. Milner, A.D. and Rugg, M.D.,1989, Interhemispheric transmission times, in: “Developments in Clinical and Experimental Neuropsychology,” J.R. Crawford and D.M. Parker, eds., Plenum Press, New York.Google Scholar
  59. Milner, A.D., and Rugg, M.D., 1992, “The Neuropsychology of Consciousness,” Academic Press, London.Google Scholar
  60. Milner, A.D., Jeeves, M.A., Silver, P.H., Lines, C.R., and Wilson, J., 1985, Reaction times to lateralized visual stimuli in callosal agenesis: Stimulus and response factors, Neuropsychologia 23: 323–331.PubMedCrossRefGoogle Scholar
  61. Mitchell, D.E. and Blakemore, C., 1970, Binocular depth perception and the corpus callosum, Vision Res. 10: 49–54.PubMedCrossRefGoogle Scholar
  62. Munte, T.F. and Heinze, H.J., 1991, Corpus-callosum Agenesie. Interhemisphärische Integration semantischer Information, Nervenarzt 62: 629–636.PubMedGoogle Scholar
  63. Pandya, D.N. and Seltzer, B., 1986, The topography of commissural fibers, in: “Two Hemispheres — One Brain: Functions of the Corpus Callosum,” F. Lepore, M. Ptito, and H.H. Jasper, eds., Alan R. Liss, New York.Google Scholar
  64. Poffenberger, A.T., 1912, Reaction time to retinal stimulation with special reference to time lost in conduction through nerve centers, Arch. Psychol. (IVY) 23: 1–73.Google Scholar
  65. Ramachandran, V.S., Cronin-Golomb, A., and Myers, J.J., 1988, Perception of apparent motion by commissurotomy patients, Nature 320: 358–359.CrossRefGoogle Scholar
  66. Rhoades, R.W., Mooney, R.D., Szczepanik, M., and Klein, B.G., 1986, Structural and functional characteristics of commissural neurons in the superior colliculus of the hamster, J. Comp. Neurol. 253: 197–215.PubMedCrossRefGoogle Scholar
  67. Rodieck, R.W., 1979, Visual pathways, Annu. Rev. Neurosci. 2: 193–225.PubMedCrossRefGoogle Scholar
  68. Rugg, M.D., Lines, C.R., and Milner, A.D., 1984, Visual evoked potentials to lateralized visual stimuli and the measurement of interhemispheric transmission time, Neuropsychologia 22: 215–225.PubMedCrossRefGoogle Scholar
  69. Rugg, M.D., Lines, C.R., and Milner, A.D., 1985a, Further investigation of visual evoked potentials elicited by lateralized stimuli: effects of stimulus eccentricity and reference site, Electroencephalogr. Clin. Neurophysiol. 62: 81–87.PubMedCrossRefGoogle Scholar
  70. Rugg, M.D., Milner, A.D., and Lines, C.R., 1985b, Visual evoked potentials to lateralized stimuli in two cases of callosal agenesis, J. Neurol. Neurosurg. Psychiatry 48: 367–373.PubMedCrossRefGoogle Scholar
  71. Rugg, M.D., Milner, A.D., Lines, C.R., and Phalp, R., 1987, Modulation of visual event-related potentials by spatial and non-spatial visual selective attention, Neuropsychologia 25: 85–96.PubMedCrossRefGoogle Scholar
  72. Saron, C.D. and Davidson, R.J., 1989, Visual evoked potential measures of interhemispheric transfer time in humans, Behay. Neurosci. 103: 1115–1138.CrossRefGoogle Scholar
  73. Sauerwein, H. and Lassonde, M.C., 1983, Intra-and interhemispheric processing of visual information in callosal agenesis, Neuropsychologia 21: 167–171.PubMedCrossRefGoogle Scholar
  74. Schneider, G.E., 1979, Is it really better to have your brain lesion early? A revision of the ‘Kennard principle’, Neuropsychologia 17: 557–583.PubMedCrossRefGoogle Scholar
  75. Sergent, J., 1987, A new look at the human split brain, Brain 110: 1375–1392.PubMedCrossRefGoogle Scholar
  76. Sergent, J., 1990, Furtive incursions into bicameral minds, Brain. 113: 537–568.PubMedCrossRefGoogle Scholar
  77. Sergent, J., 1991, Processing of spatial relations within and between the disconnected cerebral hemispheres, Brain 114: 1025–1043.PubMedCrossRefGoogle Scholar
  78. Sergent, J. and Myers, J.J., 1985, Manual, blowing, and verbal simple reactions to lateralized flashes of light in commissurotomized patients, Percept. Psychophys. 37: 571–578.PubMedCrossRefGoogle Scholar
  79. Shoumura, K., Imai, H., Kimura, S., Suzuki, T., and Ara, M., 1987, Posterior commmissural connections of area pretectalis and neighbouring structures in cat, with special reference to pupilloconstrictory pathway via posterior commissure, Jpn. J. Ophthalmo. 3: 289–304.Google Scholar
  80. Sparks, D.L. and May, L.E., 1990, Signal transformations required for the generation of saccadic eye movements, Annu. Rev. Neurosci. 13: 309–336.PubMedCrossRefGoogle Scholar
  81. Sperry, R.W., 1968a, Hemisphere disconnection and unity in conscious awareness, Am. Psychol. 23: 723–733.PubMedCrossRefGoogle Scholar
  82. Sperry, R.W., 1968b, Plasticity of neural maturation, Dev. Biol. Suppl. 2: 306–327.Google Scholar
  83. Ungerleider, L.G. and Mishkin, M., 1982, Two cortical visual systems, in: “Advances in the Analysis of Visual Behavior,” D.J. Ingle, M.A. Goodale, and R.J.W. Mansfield, eds., MIT Press, Cambridge.Google Scholar
  84. Volchan, E., Bernardes, R.F., Rocha-Miranda, C.E., Gleiser, L., and Gawryszewski, L.G., 1988, The ipsilateral field representation in the striate cortex of the opossum, Exp. Brain Res. 73: 297–304.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • A. David Milner
    • 1
  1. 1.Psychological LaboratoryUniversity of St AndrewsSt Andrews, FifeScotland

Personalised recommendations