Antagonists of Excitatory Amino Acid Receptors in the Treatment of Parkinson’s Disease

  • Ubaldo Bonuccelli
  • Paolo Del Dotto
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)


Recent progress in the connection anatomy of basal ganglia-thalamocortical circuits and in excitatory amino acid (EAA) research has provided new insights into possible pathophysiological mechanisms responsible for the appearance of the main symptoms in Parkinson’s disease (PD).


NMDA Receptor Excitatory Amino Acid NMDA Antagonist Antiparkinsonian Effect Basal Ganglion Output Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albers, G.W., Saenz, R.E., Moses, J.A., and Choi, D.W., 1991, Safety and tolerance of oral dextromethorphan in patients at risk for brain ischemia, Stroke22:1075–1077.PubMedCrossRefGoogle Scholar
  2. Albin, R.L., and Greenamyre, J.T., 1992, Alternative excitotoxic hypotheses, Neurology42: 733 – 738.PubMedGoogle Scholar
  3. Albin, R.L., and Young, A.B., Penney, J.B., 1989, The functional anatomy of basal ganglia disorders, Trends Neurosci. 12: 366 – 375.PubMedCrossRefGoogle Scholar
  4. Appelbaum, J.S., Salazar–Grueso, E.F., Richman, J.G., Shanahan, M., and Roos, R.P., 1991, Dextromethorphan in the treatment of ALS: a pilot study, Neurology41 (Suppl. 1): 393.Google Scholar
  5. Aram, J.A., Martin, D., Tomczyk, M., Zeman, S., Millar, J., Pohler, G., and Lodge, D., 1989, Neocortical epileptogenesis in vitro: studies with N-methyl-D-aspartate, phencyclidine, sigma and dextromethorphan receptors ligands, J. Pharmacol. Exp. Ther.248: 320 – 328.PubMedGoogle Scholar
  6. Askmark, H., Aquilonius, S.M., Gillberg, P.G. Liedholm, L.J., Stalberg, E., and Wuopio, R., 1993, A pilot trial of dextromethorphan in amyotrophic lateral sclerosis, J. Neurol. Neurosurg. Psychiatry56: 197 – 200.PubMedCrossRefGoogle Scholar
  7. Aziz, T.Z., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1991, Lesion of the subthalamic nucleus for the alleviation of l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism in the primate, Mov. Disorders6: 288 – 292.CrossRefGoogle Scholar
  8. Benazzouz, A., Gross, C, Féger, J., Boraud, T., and Bioulac, B., 1993, Reversal of rigidity and improvement in motor performance by subthalamic high frequency stimulation in MPTP-treated monkeys, Eur. J.Neurosci.. 5: 382 – 389.PubMedCrossRefGoogle Scholar
  9. Bergman, H., Wichmann, T., and DeLong, M.R., 1990, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus, Science249: 1436 – 1438.PubMedCrossRefGoogle Scholar
  10. Bonuccelli, U., Del Dotto, P., Piccini, P., Beghé, F., Corsini, G.U., and Muratorio, A., 1992, Dextromethorphan and parkinsonism, Lancet340: 53.PubMedCrossRefGoogle Scholar
  11. Bormann, J., 1989, Memantine is a potent blocker of N-methyl-D-aspartate (NMDA) receptor channels, Eur. J. Pharmacol.166: 591 – 592.PubMedCrossRefGoogle Scholar
  12. Brion, S., Guiot, G., Derome, P., and Comoy, C, 1965, Hémiballismes postopératoires au cours de la chirurgie stéréotaxique: à propos de 12 observations dont 2 anatomocliniques dans une série de 850 interventions, Rev. Neurol.112: 410 – 443.PubMedGoogle Scholar
  13. Brotchie, J.M., Carrol, C, Cooper, A.J., Crossman, A.R., and Mitchell, I.J., 1992, Role of NMDA associated glycine sites in the mediation of parkinsonism, Fourth Intern. Meet.Basal Ganglia Soc.Abstr.: 16Google Scholar
  14. Brotchie, J.M., Mitchell, I.J., Sambrook, M.A., and Crossman, A.R., 1991, Alleviation of parkinsonism by antagonism of excitatory amino acid transmission in the medial segment of the globus pallidus in rat and primate, Mov. Disorders, 6: 133 – 138.CrossRefGoogle Scholar
  15. Buruma, O.J.S., and Lakke, J.P.W.F., 1986, Ballism, in:“Handbook of Clinical Neurology, Vol. 5 (49),” P.J. Vinken, G.W. Bruyn, and H. L. Klawans, eds., Elsevier Science, Amsterdam, pp. 369 – 380.Google Scholar
  16. Carlsson, M., and Carlsson, A., 1989, The NMDA antagonist MK-801 causes marked locomotor stimulation in monoamine–depleted mice, J. Neural. Transm.75: 221 – 226.PubMedCrossRefGoogle Scholar
  17. Carlsson, M., and Svensson, A., 1990, The non-competitive NMDA antagonists MK-801 and PCP, as well as the competitive NMDA antagonist SDZ EAA494 (D-CPPene), interact synergistically with Clonidine to promote locomotion in monoamine-depleted mice, Life Sci. 47: 1729 – 1736.PubMedCrossRefGoogle Scholar
  18. Choi, D.W., Peters, S., and Viseskul, V., 1987, Dextrorphan and levorphanol selectively block N-methyl-D-aspartate receptor-mediated neurotoxicity on cortical neurons, J. Pharmacol. Exp. Ther.242: 713 – 720.PubMedGoogle Scholar
  19. Church, J., Jones, M.G., Davies, S.N., and Lodge, D., 1989, Antitussive agents as N-methylaspartate antagonists: further studies, Can. J. Physiol. Pharmacol.67: 561 – 567.PubMedCrossRefGoogle Scholar
  20. Church, J., Lodge, D., and Berry, S.C., 1985, Differential effects of dextrorphan and levorphanol on the excitation of rat spinal neurons by amino acids, Eur. J. Pharmacol.111: 185 – 190.PubMedCrossRefGoogle Scholar
  21. Corsini, G.U., Vaglini, F., Zuddas, A., Fornai, F., Saginario, A., and Scalori, V., 1992, Excitatory amino acids, MPTP toxicity, and dopaminergic nerve cell death in Parkinson’s disease, in:“Current Trends in the Treatment of Parkinson’s Disease,” Y. Agid, ed., John Libbey, London, pp. 5 – 17.Google Scholar
  22. Crossman, A.R., Peggs, D., Boyce, S., Luquin, M.R., and Sambrook, M.A., 1989, Effects of the NMDA antagonist MK-801 on MPTP-induced parkinsonism in the monkey, Neuropharmacol. 28: 1271 – 1273.CrossRefGoogle Scholar
  23. Ferkany, J.W., Borosky, S.A., Clissold, D.B., and Pontecorvo, M.J., 1988, Dextromethorphan inhibits NMDA-induced convulsions, Eur. J. Pharmacol.151: 151 – 154.PubMedCrossRefGoogle Scholar
  24. Finiels-Marlier, F., Marini, A.M., Williams, P., and Paul, S.M., 1993, The N-methyl-D-aspartate antagonist MK-801 fails to protect dopaminergic neurons from l-methyl-4-phenylpyridinium toxicity in vitro, J. Neurochem.60: 1968 – 1971.PubMedCrossRefGoogle Scholar
  25. Finnegan, K.T., Kerr, J.T., and Langston, J.W., 1991, Dextromethorphan protects against the neurotoxic effects of p–chloroamphetamine in rats, Brain Res. 558: 109 – 111.PubMedCrossRefGoogle Scholar
  26. Finnegan, K.T., Skratt, J.J., Irwin, I., and Langston, J.W., 1990, The N-methyl-D-aspartate (NMDA) receptor antagonist, dextrorphan, prevents the neurotoxic effects of 3,4-methylenedioxymeth-amphetamine (MDMA) in rats, Neurosci. Lett.105: 300 – 306.CrossRefGoogle Scholar
  27. Fisher, R.S., Cysyk, B.J., Lesser, R.P., Pontecorvo, M.J., Ferkany, J.T., Schwerdt, P.R., Hart, J., and Gordon, B., 1990, Dextromethorphan for treatment of complex partial seizures, Neurology40: 547 – 549.PubMedGoogle Scholar
  28. Foster, A.C., Gill, R., and Woodruff, G.N., 1988, Neuroprotective effects of MK-801 in vivo: selectivity and evidence for delayed degeneration mediated by NMDA receptor activation, J. Neurosci.8: 4745 – 4754.PubMedGoogle Scholar
  29. Franklin, P.H., and Murray, T.F., 1991, High affinity 3H-dextrorphan binding in rat brain is localized to a noncompetitive antagonist site of the activated N-methyl-D-aspartate receptor-cation channel, Mol. Pharmacol.41: 134 – 146.Google Scholar
  30. Giuffra, M.E., Sethy, V.H., Davis, T.L., Mouradian, M.M., and Chase, T.N., 1993, Milacemide therapy for Parkinson’s disease, Mov. Disorders8: 47 – 50.CrossRefGoogle Scholar
  31. Graham, W.C., Robertson, R.G., Sambrook, M.A., and Crossman, A.R., 1990, Injection of excitatory amino acid antagonists into the medial pallidal segment of a l-methyl-4-pheny 1-1,2,3,6-tetrahydropyridine (MPTP)-treated primate reverses motor symptoms of parkinsonism, Life Sci.47:PL91-PL97.Google Scholar
  32. Greenamyre, T.J., and O’Brien, C.F., 1991, N-methyl-D-aspartate antagonists in the treatment of Parkinson’s disease, Arch. Neurol.48: 977 – 981.PubMedGoogle Scholar
  33. Henderson, M.G., and Fuller, R.W., 1992, Dextromethorphan antagonizes the acute depletion of brain serotonin by p-chloroamphetamine and H75/12 in rats, Brain Res. 594: 323 – 326.PubMedCrossRefGoogle Scholar
  34. Honey, CR., Miljkovic, Z., and Mac Donald, J.F., 1985, Ketamine and phencyclidine cause a voltage dependent block of responses to L–aspartic acid, Neurosci. Lett.61: 135 – 139.PubMedCrossRefGoogle Scholar
  35. Jackisch, R., Link, T., Neufang, B., and Koch, R., 1992, Studies on the mechanism of action of the antiparkinsonian drugs memantine and amantadine: no evidence for direct dopaminomimetic or antimuscarinic properties, Arch. Int. Pharmacodyn. Ther.231: 456 – 464.Google Scholar
  36. Jaffe, D.B., Marks, S.S., and Greenberg, D.A., 1989, Antagonist drug selectivity binding sites on voltage-gated and N-methyl-D-aspartate receptor-gated Ca2+ channels, Neurosci. Lett.105: 227 – 231.PubMedCrossRefGoogle Scholar
  37. Kannari, K., and Markstein, R., 1991, Dopamine agonists potentiate antiakinetic effects of competitive NMDA-antagonists in monoamine-depleted mice, J. Neural. Transm. (Gen. Sect.)84: 211 – 220.CrossRefGoogle Scholar
  38. Klockgether, T., Jacobsen, P., Loschmann, P.A., and Turski, L., 1993, The antiparkinsonian agent budipine is an N-methyl-D-aspartate antagonist, J. Neural. Transm. (P–D Sect.)5: 101 – 106.CrossRefGoogle Scholar
  39. Klockgether, T., Turski, L., 1990, NMDA antagonists potentiate antiparkinsonian actions of L-Dopa in monoamine-depleted rats, Ann. Neurol.28: 539 – 546.PubMedCrossRefGoogle Scholar
  40. Klockgether, T., Turski, L., Honoré, T., Zhang, Z., Gash, D.M., Kurlan, R., and Greenamyre, J.T., 1991, The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine-depleted rats and MPTP-treated monkeys, Ann. Neurol.30: 717 – 723.PubMedCrossRefGoogle Scholar
  41. Kornhuber, J., Bormann, J., Hubers, M., Rusche, K., and Riederer, P., 1991, Effects of the 1-amine-adamantanes at the MK-801 binding site of the NMDA receptor gated ion channel: a human postmortem study, Eur. J. Pharmacol. (Mol. Pharmacol. Sect.)206: 297 – 300.CrossRefGoogle Scholar
  42. Leache, M.J., Baxter, M.G., and Critchley, M.A.E., 1991, Neurochemical and behavioral aspects of lamotrigine, Epilepsia32 (Suppl. 2): S4 – S8.CrossRefGoogle Scholar
  43. Leander, J.D., Rathbun, R.C., and Zimmerman, D.M., 1988, Anticonvulsant effects of phencyclidine–like drugs: relation to N-methyl-D-aspartic acid antagonism, Brain Res. 454: 368 – 372.PubMedCrossRefGoogle Scholar
  44. Loschmann, P.A., Lange, K.W., Kunow, M., Rettig, K.J., Jahnig, P., Honoré, T., Turski, L., Wachtel, H., Jenner, P., and Marsden, CD., 1991, Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPP with L-Dopa in models of Parkinson’s disease, J. Neural. Transm. (P-D Sect.)3: 203 – 213.CrossRefGoogle Scholar
  45. Lupp, A., Lucking, C.H., Koch, R., Jackisch, R., and Feuerstein, T.J., 1992, Inhibitory effects of the antiparkinsonian drug memantine and amantadine on N-methyl-D-aspartate-evoked acetylcholine release in the rabbit caudate nucleus in vitro, J. Pharmacol. Exp. Ther.263: 717 – 724.PubMedGoogle Scholar
  46. Mena, M.A., Pardo, B., Casarejos, M.J., Fahn, S., and de Yébenes, J.G., 1992, Neurotoxicity of levodopa on catecholamine-rich neurons, Mov. Disorders7: 23 – 31.CrossRefGoogle Scholar
  47. Metha, A.K., and Ticku, M.K., 1990, Role of the N-methyl-D-apartate (NMDA) receptors in experimental catalepsy in rats, Life Sci. 46: 37 – 42.CrossRefGoogle Scholar
  48. Michel, P.P., and Agid, Y., 1992, The glutamate antagonist, MK-801, does not prevents dopaminergic cell death induced by the l-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures, Brain Res. 597: 233 – 240.PubMedCrossRefGoogle Scholar
  49. Miller, W.C., and DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPTP model of parkinsonism, in:“The Basal Ganglia II.Structure and Function-Current Concepts,” M.B. Carpenter and A. Jayaraman, eds., Plenum Press,New York, pp. 395 – 403.Google Scholar
  50. Mitchell, I.J., Clarke, C.E., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1989, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, Neuroscience32: 213 – 226.PubMedCrossRefGoogle Scholar
  51. Montastruc, J.L., Rascol, O., Senard, J.M., and Rascol, A., 1992, A pilot study of N-methyl-D-aspartate (NMDA) antagonist in Parkinson’s disease, J. Neurol. Neurosurg. Psychiatry55: 630 – 631.PubMedCrossRefGoogle Scholar
  52. Morelli, M., and Di Chiara, G., 1990a, MK-801 potentiates dopaminergic Dl but reduces D2 responses in the 6-hydroxydopamine model of Parkinson’s disease, Eur. J. Pharmacol.182: 611 – 612.CrossRefGoogle Scholar
  53. Morelli, M., and Di Chiara, G., 1990b, Stereospecific blockade of N-methyl-D-aspartate transmission by MK-801 prevents priming of SKF 38393-induced turning, Neuropharmacol. 101: 287 – 288.Google Scholar
  54. Olanov, C.W., 1990, Oxidation reactions in Parkinson’s disease, Neurology40: 32 – 37.Google Scholar
  55. Olney, J.W., Price, M.T., Labruyere, J., Salles, K.S., Frierdich, G., Mueller, M., and Silverman, E., 1987, Anti-parkinsonian agents are phencyclidine agonists and N-methyl-aspartate antagonists, Eur. J. Pharmacol.142: 319 – 320.PubMedCrossRefGoogle Scholar
  56. Olney, J.W., Zorumski, C.F., Stewart, G.R., Price, M.T., Wang G., and Labruyere, J., 1990, Excitotoxicity of L-DOPA and 6-OH-DOPA: implications for Parkinson’s and Huntington’s diseases, Exp. Neurol., 108: 269 – 272.PubMedCrossRefGoogle Scholar
  57. Parker, W.D., Boyson, S.J., and Parks, J.K., 1989, Abnormalities of the electron transport chain in idiopathic Parkinson’s disease, Ann. Neurol.36: 719 – 723.CrossRefGoogle Scholar
  58. Pfaff, G., Briegel, P., and Lamprecht, I., 1983, Inter–individual variation in the metabolism of dextromethorphan, Int. J. Pharm.14: 173 – 189.CrossRefGoogle Scholar
  59. Pollak, P., Benabid, A.L., Gross, C., Gao, D.M., Laurent, A., Benazzouz, A., Hoffmann, D., Gentil, M., and Perret, J., 1993, Effets de la stimulation du noyau sous-thalamique dans la maladie de Parkinson, Rev. Neurol.149: 175 – 176.PubMedGoogle Scholar
  60. Prince, D.A., and Feeser, H.R., 1988, Dextromethorphan protects against cerebral infarction in rat model of hypoxia-ischemia, Neurosci. Lett.85: 291 – 296.PubMedCrossRefGoogle Scholar
  61. Rabey, J.M., Nissipeanu, P., and Korczyn, A.D., 1992, Efficacy of memantine, an NMDA receptor antagonist, in the treatment of Parkinson’s disease, J. Neural. Transm. (P–D Sect.)4: 277 – 282.CrossRefGoogle Scholar
  62. Ramachander, G., Williams, F.D., and Emele, J.F., 1977, Determination of dextrorphan in plasma and evaluation of bioavailability of dextromethorphan hydrobromide in humans, J. Pharmac. Sci.66: 1047 – 1048.CrossRefGoogle Scholar
  63. Riederer, P., Lange, K.W., Kornhuber, J., and Danielczyk, W., 1991, Pharmacotoxic psychosis after memantine in Parkinson’s disease, Lancet338: 1022 – 1023.PubMedCrossRefGoogle Scholar
  64. Rosenberg, P.A., Loring, R., Xie, Y., Zaleskas, V., and Aizenman, E., 1991, 2,4,5-Trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin, Proc. Nat. Acad. Sci. USA, 88:4865–4869.PubMedCrossRefGoogle Scholar
  65. Saenz, R., Tanner, C.M., Albers, G., Kurth, M., and Tetrud, J., 1993, A preliminary study of dextromethorphan (DM) as adjunctive therapy in Parkinson’s disease (PD), Neurology43 (Suppl.2): 155.Google Scholar
  66. Schapira, A.H.V., Cooper, J.M., Dexter, D., Jenner P., Clark, J.B., and Marsden, CD., 1990, Mitochondrial complex I deficiency in Parkinson’s disease, J. Neurochem.54: 820 – 827.CrossRefGoogle Scholar
  67. Schmidt, W.J., and Bubser, M., 1989, Anticataleptic effects of the N-methyl-D-aspartate antagonist MK-801 in rats, Pharmacol. Biochem. Behav.32: 621 – 623.PubMedCrossRefGoogle Scholar
  68. Schneider, E., Fischer, P.A., Clemens, R., Balzereit, F., Funfgeld, E.W., and Haase, H.J., 1984, Effects of oral memantine on symptoms of Parkinson’s disease, Dtsch. Med. Wochenschr.109: 987 – 990.PubMedCrossRefGoogle Scholar
  69. Sellal, F., Hirsch, E., Lisovoski, F., Mutschier, V., Collard, M., and Marescaux, C, 1992, Contralateral disappearance of parkinsonian signs after subthalamic hematoma, Neurology42: 255 – 256.PubMedGoogle Scholar
  70. Skaper, S.D., Facci, L., Schiavo, N., Vantini, G., Moroni, F., Dal Toso, R., and Leon, A., 1992, Characterization of 2,4,5-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GM1: implications for Parkinson’s disease, J. Pharmacol. Exp. Ther.263: 1040 – 1046.Google Scholar
  71. Sonsalla, P.K., Nicklas, W.J., and Heikkila, R.E., 1989, Role for excitatory amino acids in methamphetamine-induced nigrostriatal dopaminergic toxicity, Science243: 398 – 400.PubMedCrossRefGoogle Scholar
  72. Sonsalla, P.K., Riordan, D.E., and Heikkila, R.E., 1991, Competitive and noncompetitive antagonists at N-methyl-D-aspartate receptors protect against methamphetamine-induced dopaminergic damage in mice, J. Pharmacol. Exp. Ther.256: 506 – 512.PubMedGoogle Scholar
  73. Sonsalla, P.K., Zeevalc, G.D., Manzino, L., Giovanni, A., and Nicklas, W.J., 1992, MK-801 fails to protect against the dopaminergic neuropathology produced by systemic l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in mice or intranigral l-methyl-4-phenylpyridinium in rats, J. Neurochem.58: 1979 – 1982.PubMedCrossRefGoogle Scholar
  74. Steinberg, G.K., George, CP., De LaPaz, R., Shibata, D.K., and Gross, T., 1988, Dextromethorphan protects against cerebral injury following transient focal ischemia in rabbits, Stroke19: 1112 – 1118.PubMedCrossRefGoogle Scholar
  75. Storey, E., Hyman, B.T., Jenkins, B., Brouillet, E., Miller, J.M., Rosen, B.R., and Beai, M.F., 1992, 1-Methyl-4-phenylpyridinium produces excitotoxic lesions in rat striatum as a result of impairment of oxidative metabolism, J. Neurochem. 58:1975–1978.PubMedCrossRefGoogle Scholar
  76. Turski, L., Bressler, K., Rettig, K.J., Loschmann, P.A., and Wachtel, H., 1991, Protection of substantianigra from MPP* neurotoxicity by N-methyl-D-aspartate antagonists, Nature 349: 414 – 418.PubMedCrossRefGoogle Scholar
  77. Walker, F.O., and Hunt, V.P., 1989, An open label trial of dextromethorphan in Huntington’s disease, Clin. Neuropharmacol.12: 322 – 330.PubMedCrossRefGoogle Scholar
  78. Wong, B.Y., Coulter, D.A., Choi, D.W., and Prince, D.A., 1988, Dextrorphan and dextromethorphan, common antitussives, are antiepileptic and antagonize N–methyl–D–aspartate in brain slices, Neurosci. Lett.85: 261 – 266.PubMedCrossRefGoogle Scholar
  79. Woodworth, J.R., Dennis, S.R.K., Moore, L., and Rotenberg, K.S., 1987, The polymorphic metabolism of dextromethorphan, J. Clin. Pharmacol.27: 139 – 143.PubMedGoogle Scholar
  80. Zipp, F., Baas, H., and Fischer, P.A., 1993, Lamotrigine—antiparkinsonian activity by blockade of glutamate release?, J. Neural. Transm. (P–D Sect.)5: 67 – 75.CrossRefGoogle Scholar
  81. Zuddas, A., Corsini, G.U., Schinelli, S., Johannessen, J.N., Di Porzio, U., and Kopin, I.J., 1989, MPTP treatment combined with ethanol or acetaldehyde selectively destroys dopaminergic neurons in mouse substantia nigra, Brain Res. 501: 1 – 10.PubMedCrossRefGoogle Scholar
  82. Zuddas, A., Oberto, G., Vaglini, F., Fascetti, F., Fornai, F., and Corsini, G.U., 1992, MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates, J. Neurochem.59:733–735.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Ubaldo Bonuccelli
    • 1
  • Paolo Del Dotto
    • 1
  1. 1.Institute of Clinical NeurologyUniversity of PisaPisaItaly

Personalised recommendations