Advertisement

Nicotine, Cocaine and Amphetamine Share Several Common Mechanisms of c-fos Induction in the Striatum: Implications for the Functions of the Striatum

  • Hideo Kiba
  • A. Jayaraman
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)

Abstract

The striatum (nucleus accumbens and the caudatoputamen) receives dense dopaminergic input form several subdivisions of the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) (Fallon, 1988). Different human neurological disorders and varieties of animals models that have manipulated the striatal dopaminergic innervation have suggested that dopamine plays a major role in integrating the various inputs and the neurotransmitter systems intrinsic to the striatum. Dysfunctions of the dopaminergic input to the striatum result in a complex spectrum of hypo- and hyperkinetic as well as brady- and hyperphrenic syndromes. Our understanding of the functions of the basal ganglia clearly depends on better definition of the role played by the dopamine in the striatum.

Keywords

NMDA Receptor Nucleus Accumbens Ventral Tegmental Area Intense Expression Dopamine Overflow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, W.C., Dragunow, M., and Tate, W.P., 1991, The role of immediate early genes in the stabilization of long term potentiation,Mol. Neurobiol. 5:297–314.PubMedCrossRefGoogle Scholar
  2. Berretta, S., Robertson, H.A., and Graybiel, A.M., 1992, Dopamine and glutamate agonists stimulate neuron specific expression of fos–like protein in the striatum,J. Neurophysiol. 68:767–777.PubMedGoogle Scholar
  3. Bliss, T.V.P., and Collingridge, G.L., 1993, A synaptic model of memory:long term potentiation in the hippocampus,Nature 361:31–39.PubMedCrossRefGoogle Scholar
  4. Bourne, H.R., and Nicoli, R., 1993, Molecular machines integrate coincident synaptic signals,Cell 72/Neuron10:65–75.CrossRefGoogle Scholar
  5. Chang, S.L., Squinto, S.P., and Harlan, R.E., 1988, Morphine activation of c–fos expression in rat brain, Biochem. biophys.Res. Commun. 2:698–704.Google Scholar
  6. Clarke, P.B.S., and Pert, A., 1985, Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons,Brain Res. 348:355–358.PubMedCrossRefGoogle Scholar
  7. Corrigall, W.A., and Coen, K.M., 1991, Cocaine self–administration is increased by both Dl and D2 dopamine antagonist,Pharmacol. Biochem. Behav. 39:799–802.PubMedCrossRefGoogle Scholar
  8. Daly, S.A., and Waddington, J.L., 1992, Two directions of dopamine D1/D2 receptor interaction in studies of behavioural regulation: a finding generic to four new, selective dopamine Dl receptor antagonists,Eur. J. Pharamacol. 213:251–258.CrossRefGoogle Scholar
  9. Fallon, J.H, 1988, Topographic organization of ascending dopaminergic projections,in:“The Mesocorticolimbic dopmaine system,” P.W. Kalivas and C.B. Nemeroff, eds.,Ann. NY Acad. Sci. 537:1–9.Google Scholar
  10. Fu, L., and Beckstead, R.M., 1991, Cortical stimulation induces fos expression in striatal neurons,Neuroscience 46:329–334.CrossRefGoogle Scholar
  11. Giorguieff-Chesselet, M.F., Kemel, M.L., Wandscheer, D., and Glowinski, J., 1979, Regulation of dopamine release by nicotinic receptors in rat striatal slices:Effect of nicotine in a low concentration,Life. Sci. 25:1257–1262.PubMedCrossRefGoogle Scholar
  12. Graybiel, A.M., Moratalla, R., and Robertson, H.A., 1990, Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum,Proc. Natl. Acad. Sci. USA 87:6912–6916.PubMedCrossRefGoogle Scholar
  13. Grenhoff, J., Ashton-Jones, G., and Svennson, T.H., 1986, Nicotinic effects on the firing pattern of midbrain dopamine neurons,Acta Physiol. Scand. 128:351–358.PubMedCrossRefGoogle Scholar
  14. Hubner, C.B., and Moretón, J.E., 1991, Effects of selective Dl and D2 dopamine antagonists on cocaine self-administration in the rat,Psychopharmacology (Berl) 105:151–156.PubMedCrossRefGoogle Scholar
  15. Hurd, Y.L., Kehr, J., and Ungerstedt, U., 1988, In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow,J Neurochem. 51:1314–1416.PubMedCrossRefGoogle Scholar
  16. Hurd, Y.L., Weiss, F., Koob, G.F., and, N.E., and Ungerstedt, U., 1989, Cocaine reinforcement and extracvellular dopamine overflow in rat nucleus accumbens:an in vivo microdialysis study,Brain Res. 498:199–203.PubMedCrossRefGoogle Scholar
  17. Imperato, A., Mulas, A., and Dichiara, G., 1986, Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats,Eur. J. Pharmac. 132:337–338.CrossRefGoogle Scholar
  18. Imperato, A., Scrocco, M.G., Bacchi, S., and Angelucci, L., 1990, NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus,Eur. J. Pharmacol. 187:555–556.PubMedCrossRefGoogle Scholar
  19. Jayaraman, A., 1985, Functional subcompartments of the striatum,Soc. Neurosci. Abst. 11:199.Google Scholar
  20. Jayaraman, A., 1987, The Basal Ganglia and Cognition: An Interpretation of Anatomical Connectivity Pattern,in:“Basal Ganglia and Behavior: Sensory aspects of Motor Functioning,” J.S. Schneider and T. Lidsky, eds., Hans Huber Publications, Toronto, p. 149.Google Scholar
  21. Kelley, A.E., and Delfs, J.M., 1991, Dopamine and conditioned reinforcement,Psychopharmac. 103:187–196.CrossRefGoogle Scholar
  22. Koob, G.F, 1992, Neural mechanisms of drug reinforcement,Ann. NY. Acad. Sci. 654:171–191.PubMedCrossRefGoogle Scholar
  23. Krebs, M.O., Trovero, F., Desban, M., Gauchy, C, Glowinski, J., and Kemel, M.L, 1991, Distinct presynaptic regulation of dopamine release through NMDA receptors in Striosome- and Matrix-enriched areas of the rat striatum,J. Neurosci. 11:1256–1262.PubMedGoogle Scholar
  24. Lewander, T., 1977, Effects of amphetamines in animals,in: “Drug Addiction,” W.R. Martin, ed., Springer-Verlag, New York, p. 33.Google Scholar
  25. McDougall, S.A., Crawford, C.A., and Nonneman, A.J., 1992, Reinforced responding of the 11-day-old rat pup: synergistic interaction of Dl and D2 dopamine receptors,Pharmacol. Biochem. Behav. 42:163–168.PubMedCrossRefGoogle Scholar
  26. McGeorge, A.J., and Faull, R.L.M., 1989 The organization of the projection from the cerebral crotex to the striatum in the rat,Neuroscience 29:503–537.PubMedCrossRefGoogle Scholar
  27. McMillen, BA ., 1983, CNS stimulants: two distinct mechanisms of action for amphetamine-like drugs,Trends Pharmacol. Sci. 4:429–432.CrossRefGoogle Scholar
  28. Moore, KE ., 1978, Amphetamines: Biochemical and behavioral actions in animals,in: “Handbook of Psychopharmacology,” LL. Wersen, SD. Iversen, and SH. Snyder, eds., Plenum Press, New York,p. 41.Google Scholar
  29. Moratalla, R., Vickers, E.A., Robertson, H.A., Cochran, B.H., and Graybiel, A.M., 1993, Coordinate expression of c–fos and jun B is induced in the rat striatum by cocaine,J. Neurosci. 13:423–433.PubMedGoogle Scholar
  30. Morgan, J.I., Cohen, D.R., Hempstead, D.L., and Curran, T, 1987, Mapping patterns of c-fos expression in the central nervous system after seizure,Science 237:192–197.PubMedCrossRefGoogle Scholar
  31. Morgan, J.I., Cohen, D.R., Hempstead, D.L., and Curran, T, 1987, Mapping patterns of c-fos expression in the central nervous system after seizure,Science 237:192–197.PubMedCrossRefGoogle Scholar
  32. Phillips, AG., and Fibiger, HC., 1989, Neuroanatonical basis of intracranial self-stimulation: untangling the Gordian knot,in: “The Neuropharmacological Basis of Reward,” JM. Liebman and SJ. Cooper, eds., Clarendon Press, Oxford, pp..Google Scholar
  33. Phillips, A.G., Carter, D.A., and Fibiger, H.C., 1976, Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen,Brain Res. 104:221–232.PubMedCrossRefGoogle Scholar
  34. Robertson, G.S., and Fibiger, H.C., 1992, Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine,Neuroscience 46:315–328.PubMedCrossRefGoogle Scholar
  35. Robertson, H.A., 1992, Immediate early genes, neuronal plasticity, and memory,Biochem. Cell Biol, 70:729–737.PubMedCrossRefGoogle Scholar
  36. Robledo, P., Maldonado-Lopez, R., and Koob, GF,1992, Role of dopamine receptors in the nucleus accumbens in the rewarding properties of cocaine,Ann. N. Acad. Sci. 654:509–512.CrossRefGoogle Scholar
  37. Routtenberg, A., 1969, Forebrain pathways of reward in Rattus norvegicus,Comp. Physiol. Psych. 75:269–276.CrossRefGoogle Scholar
  38. Sheng, M., and M.E., Greenberg, M.E., 1990, The regulation and function of c–fos and other immediate early genes in the nervous system,Neuron 4:477–485.PubMedCrossRefGoogle Scholar
  39. Torres, G., and Rivier, C., 1993, Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists,Brain Res. Bull. 30:173–176.PubMedCrossRefGoogle Scholar
  40. Toth, E. Sershen, H., Hashim, A., Vizi, ES., and Lajtha, A., 1992, Effect of Nicotine on Extracellular Levels of Neurotransmitters Assessed by Microdialysis in Various Brain Regions: Role of Glutamic Acid,Neurochem. Res 17:265–271.PubMedCrossRefGoogle Scholar
  41. Waddington, J.L., 1989, Functional interactions between D- l and D- 2 dopamine receptor systems: their role in the regulation of psychomotor behaviour, putative mechanisms, and clinical relevance,J. Psychopharmacol. 3:54–61.CrossRefGoogle Scholar
  42. Waddington, J.L., and O’Boyle, K.M., 1987, The D- l dopmaine receptor and the search for its functional role: from neurochemistry to behavior,Rev. Neurosci. 1:157–184.PubMedCrossRefGoogle Scholar
  43. Wise, R.A., and Rompre, P.P., 1989, Brain dopamine and reward,Ann. Rev. Psychol. 40:191–225.CrossRefGoogle Scholar
  44. Witkin, JM., Schindler, CW., Telia, SR., and Goldberg, SR, 1991, Interaction of haloperidol and SCH 23390 with cocaine and dopamine receptor subtype-selective agonists on schedule-controlled behavior of squirrel monkeys,Psychopharmacology (Berl.)104:425–431.PubMedCrossRefGoogle Scholar
  45. Woolverton, W.L., and Johnson, K.M., 1992, Neurobiology of cocaine abuse,Trends in Pharmac. Sci. 13:193–200.CrossRefGoogle Scholar
  46. Young, S.T., Porrino, L.J., and Iadarola, M.J., 1991, Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic Dl receptors,Proc. Natl. Acad. Sci. USA, 88:1291–1295.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Hideo Kiba
    • 1
  • A. Jayaraman
    • 1
  1. 1.Department of NeurologyLouisiana State University School of MedicineNew OrleansUSA

Personalised recommendations