Skip to main content

Nicotine, Cocaine and Amphetamine Share Several Common Mechanisms of c-fos Induction in the Striatum: Implications for the Functions of the Striatum

  • Chapter
The Basal Ganglia IV

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

  • 135 Accesses

Abstract

The striatum (nucleus accumbens and the caudatoputamen) receives dense dopaminergic input form several subdivisions of the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) (Fallon, 1988). Different human neurological disorders and varieties of animals models that have manipulated the striatal dopaminergic innervation have suggested that dopamine plays a major role in integrating the various inputs and the neurotransmitter systems intrinsic to the striatum. Dysfunctions of the dopaminergic input to the striatum result in a complex spectrum of hypo- and hyperkinetic as well as brady- and hyperphrenic syndromes. Our understanding of the functions of the basal ganglia clearly depends on better definition of the role played by the dopamine in the striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, W.C., Dragunow, M., and Tate, W.P., 1991, The role of immediate early genes in the stabilization of long term potentiation,Mol. Neurobiol. 5:297–314.

    Article  PubMed  CAS  Google Scholar 

  • Berretta, S., Robertson, H.A., and Graybiel, A.M., 1992, Dopamine and glutamate agonists stimulate neuron specific expression of fos–like protein in the striatum,J. Neurophysiol. 68:767–777.

    PubMed  CAS  Google Scholar 

  • Bliss, T.V.P., and Collingridge, G.L., 1993, A synaptic model of memory:long term potentiation in the hippocampus,Nature 361:31–39.

    Article  PubMed  CAS  Google Scholar 

  • Bourne, H.R., and Nicoli, R., 1993, Molecular machines integrate coincident synaptic signals,Cell 72/Neuron10:65–75.

    Article  Google Scholar 

  • Chang, S.L., Squinto, S.P., and Harlan, R.E., 1988, Morphine activation of c–fos expression in rat brain, Biochem. biophys.Res. Commun. 2:698–704.

    Google Scholar 

  • Clarke, P.B.S., and Pert, A., 1985, Autoradiographic evidence for nicotine receptors on nigrostriatal and mesolimbic dopaminergic neurons,Brain Res. 348:355–358.

    Article  PubMed  CAS  Google Scholar 

  • Corrigall, W.A., and Coen, K.M., 1991, Cocaine self–administration is increased by both Dl and D2 dopamine antagonist,Pharmacol. Biochem. Behav. 39:799–802.

    Article  PubMed  CAS  Google Scholar 

  • Daly, S.A., and Waddington, J.L., 1992, Two directions of dopamine D1/D2 receptor interaction in studies of behavioural regulation: a finding generic to four new, selective dopamine Dl receptor antagonists,Eur. J. Pharamacol. 213:251–258.

    Article  CAS  Google Scholar 

  • Fallon, J.H, 1988, Topographic organization of ascending dopaminergic projections,in:“The Mesocorticolimbic dopmaine system,” P.W. Kalivas and C.B. Nemeroff, eds.,Ann. NY Acad. Sci. 537:1–9.

    Google Scholar 

  • Fu, L., and Beckstead, R.M., 1991, Cortical stimulation induces fos expression in striatal neurons,Neuroscience 46:329–334.

    Article  Google Scholar 

  • Giorguieff-Chesselet, M.F., Kemel, M.L., Wandscheer, D., and Glowinski, J., 1979, Regulation of dopamine release by nicotinic receptors in rat striatal slices:Effect of nicotine in a low concentration,Life. Sci. 25:1257–1262.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., Moratalla, R., and Robertson, H.A., 1990, Amphetamine and cocaine induce drug-specific activation of the c-fos gene in striosome-matrix compartments and limbic subdivisions of the striatum,Proc. Natl. Acad. Sci. USA 87:6912–6916.

    Article  PubMed  CAS  Google Scholar 

  • Grenhoff, J., Ashton-Jones, G., and Svennson, T.H., 1986, Nicotinic effects on the firing pattern of midbrain dopamine neurons,Acta Physiol. Scand. 128:351–358.

    Article  PubMed  CAS  Google Scholar 

  • Hubner, C.B., and Moretón, J.E., 1991, Effects of selective Dl and D2 dopamine antagonists on cocaine self-administration in the rat,Psychopharmacology (Berl) 105:151–156.

    Article  PubMed  CAS  Google Scholar 

  • Hurd, Y.L., Kehr, J., and Ungerstedt, U., 1988, In vivo microdialysis as a technique to monitor drug transport: correlation of extracellular cocaine levels and dopamine overflow,J Neurochem. 51:1314–1416.

    Article  PubMed  CAS  Google Scholar 

  • Hurd, Y.L., Weiss, F., Koob, G.F., and, N.E., and Ungerstedt, U., 1989, Cocaine reinforcement and extracvellular dopamine overflow in rat nucleus accumbens:an in vivo microdialysis study,Brain Res. 498:199–203.

    Article  PubMed  CAS  Google Scholar 

  • Imperato, A., Mulas, A., and Dichiara, G., 1986, Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats,Eur. J. Pharmac. 132:337–338.

    Article  CAS  Google Scholar 

  • Imperato, A., Scrocco, M.G., Bacchi, S., and Angelucci, L., 1990, NMDA receptors and in vivo dopamine release in the nucleus accumbens and caudatus,Eur. J. Pharmacol. 187:555–556.

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman, A., 1985, Functional subcompartments of the striatum,Soc. Neurosci. Abst. 11:199.

    Google Scholar 

  • Jayaraman, A., 1987, The Basal Ganglia and Cognition: An Interpretation of Anatomical Connectivity Pattern,in:“Basal Ganglia and Behavior: Sensory aspects of Motor Functioning,” J.S. Schneider and T. Lidsky, eds., Hans Huber Publications, Toronto, p. 149.

    Google Scholar 

  • Kelley, A.E., and Delfs, J.M., 1991, Dopamine and conditioned reinforcement,Psychopharmac. 103:187–196.

    Article  CAS  Google Scholar 

  • Koob, G.F, 1992, Neural mechanisms of drug reinforcement,Ann. NY. Acad. Sci. 654:171–191.

    Article  PubMed  CAS  Google Scholar 

  • Krebs, M.O., Trovero, F., Desban, M., Gauchy, C, Glowinski, J., and Kemel, M.L, 1991, Distinct presynaptic regulation of dopamine release through NMDA receptors in Striosome- and Matrix-enriched areas of the rat striatum,J. Neurosci. 11:1256–1262.

    PubMed  CAS  Google Scholar 

  • Lewander, T., 1977, Effects of amphetamines in animals,in: “Drug Addiction,” W.R. Martin, ed., Springer-Verlag, New York, p. 33.

    Google Scholar 

  • McDougall, S.A., Crawford, C.A., and Nonneman, A.J., 1992, Reinforced responding of the 11-day-old rat pup: synergistic interaction of Dl and D2 dopamine receptors,Pharmacol. Biochem. Behav. 42:163–168.

    Article  PubMed  CAS  Google Scholar 

  • McGeorge, A.J., and Faull, R.L.M., 1989 The organization of the projection from the cerebral crotex to the striatum in the rat,Neuroscience 29:503–537.

    Article  PubMed  CAS  Google Scholar 

  • McMillen, BA ., 1983, CNS stimulants: two distinct mechanisms of action for amphetamine-like drugs,Trends Pharmacol. Sci. 4:429–432.

    Article  CAS  Google Scholar 

  • Moore, KE ., 1978, Amphetamines: Biochemical and behavioral actions in animals,in: “Handbook of Psychopharmacology,” LL. Wersen, SD. Iversen, and SH. Snyder, eds., Plenum Press, New York,p. 41.

    Google Scholar 

  • Moratalla, R., Vickers, E.A., Robertson, H.A., Cochran, B.H., and Graybiel, A.M., 1993, Coordinate expression of c–fos and jun B is induced in the rat striatum by cocaine,J. Neurosci. 13:423–433.

    PubMed  CAS  Google Scholar 

  • Morgan, J.I., Cohen, D.R., Hempstead, D.L., and Curran, T, 1987, Mapping patterns of c-fos expression in the central nervous system after seizure,Science 237:192–197.

    Article  PubMed  CAS  Google Scholar 

  • Morgan, J.I., Cohen, D.R., Hempstead, D.L., and Curran, T, 1987, Mapping patterns of c-fos expression in the central nervous system after seizure,Science 237:192–197.

    Article  PubMed  CAS  Google Scholar 

  • Phillips, AG., and Fibiger, HC., 1989, Neuroanatonical basis of intracranial self-stimulation: untangling the Gordian knot,in: “The Neuropharmacological Basis of Reward,” JM. Liebman and SJ. Cooper, eds., Clarendon Press, Oxford, pp..

    Google Scholar 

  • Phillips, A.G., Carter, D.A., and Fibiger, H.C., 1976, Dopaminergic substrates of intracranial self-stimulation in the caudate-putamen,Brain Res. 104:221–232.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, G.S., and Fibiger, H.C., 1992, Neuroleptics increase c-fos expression in the forebrain: contrasting effects of haloperidol and clozapine,Neuroscience 46:315–328.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.A., 1992, Immediate early genes, neuronal plasticity, and memory,Biochem. Cell Biol, 70:729–737.

    Article  PubMed  CAS  Google Scholar 

  • Robledo, P., Maldonado-Lopez, R., and Koob, GF,1992, Role of dopamine receptors in the nucleus accumbens in the rewarding properties of cocaine,Ann. N. Acad. Sci. 654:509–512.

    Article  CAS  Google Scholar 

  • Routtenberg, A., 1969, Forebrain pathways of reward in Rattus norvegicus,Comp. Physiol. Psych. 75:269–276.

    Article  Google Scholar 

  • Sheng, M., and M.E., Greenberg, M.E., 1990, The regulation and function of c–fos and other immediate early genes in the nervous system,Neuron 4:477–485.

    Article  PubMed  CAS  Google Scholar 

  • Torres, G., and Rivier, C., 1993, Cocaine-induced expression of striatal c-fos in the rat is inhibited by NMDA receptor antagonists,Brain Res. Bull. 30:173–176.

    Article  PubMed  CAS  Google Scholar 

  • Toth, E. Sershen, H., Hashim, A., Vizi, ES., and Lajtha, A., 1992, Effect of Nicotine on Extracellular Levels of Neurotransmitters Assessed by Microdialysis in Various Brain Regions: Role of Glutamic Acid,Neurochem. Res 17:265–271.

    Article  PubMed  CAS  Google Scholar 

  • Waddington, J.L., 1989, Functional interactions between D- l and D- 2 dopamine receptor systems: their role in the regulation of psychomotor behaviour, putative mechanisms, and clinical relevance,J. Psychopharmacol. 3:54–61.

    Article  Google Scholar 

  • Waddington, J.L., and O’Boyle, K.M., 1987, The D- l dopmaine receptor and the search for its functional role: from neurochemistry to behavior,Rev. Neurosci. 1:157–184.

    Article  PubMed  CAS  Google Scholar 

  • Wise, R.A., and Rompre, P.P., 1989, Brain dopamine and reward,Ann. Rev. Psychol. 40:191–225.

    Article  CAS  Google Scholar 

  • Witkin, JM., Schindler, CW., Telia, SR., and Goldberg, SR, 1991, Interaction of haloperidol and SCH 23390 with cocaine and dopamine receptor subtype-selective agonists on schedule-controlled behavior of squirrel monkeys,Psychopharmacology (Berl.)104:425–431.

    Article  PubMed  CAS  Google Scholar 

  • Woolverton, W.L., and Johnson, K.M., 1992, Neurobiology of cocaine abuse,Trends in Pharmac. Sci. 13:193–200.

    Article  CAS  Google Scholar 

  • Young, S.T., Porrino, L.J., and Iadarola, M.J., 1991, Cocaine induces striatal c-Fos-immunoreactive proteins via dopaminergic Dl receptors,Proc. Natl. Acad. Sci. USA, 88:1291–1295.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Kiba, H., Jayaraman, A. (1994). Nicotine, Cocaine and Amphetamine Share Several Common Mechanisms of c-fos Induction in the Striatum: Implications for the Functions of the Striatum. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_49

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_49

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics