Advertisement

The Subthalamic Nucleus: A More Complex Structure than Expected

  • Jean Féger
  • Mireille Mouroux
  • Abdelhamid Benazzouz
  • Thomas Boraud
  • Christian Gross
  • Alan R. Crossman
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)

Abstract

Almost all the papers on the subthalamic nucleus, after the usual review of its anatomical connections, summarize the function of this structure with the classical reference to hemiballism. This type of anatomopathological approach is still widely used in neurobiology, despite the fact that it is a little strange to define subthalamic nucleus functions by reference to its dysfunction. The physiological functions have only recently been freed from the impressive and restrictive clinical description of hemiballism. Currently, facts and hypotheses stress the relationship between hypo- or hyperactivity of the subthalamic neurons and two opposite motor dysfunctions, hyperkinesia as in hemiballism and akinesia as in parkinsonism. Moreover, the importance of subthalamic inputs arising from associative or limbic structures should not be overlooked since they are an integral part of this concept of the function of the subthalamic nucleus and suggest that this structure has broader and more complex involvement in a large range of activities which may or may not have a motor component.

Keywords

Basal Ganglion Globus Pallidus Subthalamic Nucleus High Frequency Stimulation Internal Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afsharpour, S., 1985, Topographical projections of the cerebral cortex to the subthalamic nucleus,J. Comp. Neurol. 236:14–28.PubMedCrossRefGoogle Scholar
  2. Akert, K., and Hartmann- Von Monakow, K., 1980, Relationships of precentral, premotor and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus,Acta Neurobiol. Exp. 40:7–25.Google Scholar
  3. Alberch, A., Arenas, E., Sanchez Arroyes, R., and Marsal, J., 1990, Excitatory amino acids release endogenous acetylcholine from rat striatal slices: regulation by GABA,Neurochem. Int. 17:107–116.PubMedCrossRefGoogle Scholar
  4. Albin, R.L., Young, A.B. and Penney, J.B., 1989, The functionnal anatomy of basal ganglia disorders,Trends Neurosci. 12:366–375.PubMedCrossRefGoogle Scholar
  5. Alexander, G.E., and Crutcher, M.D., 1990, Functionnal architecture of basal ganglia circuits:neural substrates of parallel processing,Trends Neurosci. 13:266–271.PubMedCrossRefGoogle Scholar
  6. Alexander, G.E., Delong, M.R., and Crutcher, M.D., 1992, Do cortical and basal ganglionic motor areas use motor programs to control movement,Behav Brain Sci. 15:656–665.CrossRefGoogle Scholar
  7. Aziz, T.Z., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1991, Lesion of the subthalamic nucleus for alleviation of 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridine (MPTP)-induced parkinsonism in the primate,Mov. Disord. 6:288–292.PubMedCrossRefGoogle Scholar
  8. Benabid, A.L., Pollak, P., Louveau, A., Hommel, M., Perret, J., De Rougemont, J., 1989, Chronic Vim-thalamic stimulation in movement disorders,in: “Neural mechanisms in disorders of movement,” A.R. Crossman, M.A. Sambrook, eds., Plenum Press, New York, pp. 413–415.Google Scholar
  9. Benazzouz, A., Gross, C, Féger, J., Boraud, T., and Bioulac, B, 1993, Reversal of rigidity and improvement in motor performance by subthalamic high frequency stimulation in MPTP-treated monkeys,Eur. J. Neurosci. 5:382–389.PubMedCrossRefGoogle Scholar
  10. Bentivoglio, M., Kuypers, H.G.M., Catsman-Berrevoets, CE., Loewe, H., and Dann, O., 1980, Two new fluorescent retrograde neuronal tracers which are transported over long distances,Neurosci. Lett. 18:25–30.PubMedCrossRefGoogle Scholar
  11. Berendse, H.W., and Groenewegen, H.J., 1990, Organization of the thalamostriatal projections in the rat, with special emphasis on the ventral striatum,J. Comp. .Neurol. 299:187–228.PubMedCrossRefGoogle Scholar
  12. Berendse, H.W., and Groenewegen, H.J., 1991a, Restricted cortical termination fields of the midline and intralaminar thalamic nuclei in the rat,Neuroscience 42:73–102.PubMedCrossRefGoogle Scholar
  13. Berendse, H.W., Groenewegen, H.J., 1991b, The connections of the medial part of the subthalamic nucleus in the rat: evidence for a parallel organization,in “ The Basal Ganglia III,” G. Bernardi, M. B.Carpenter, G. D. Chiara, M. Morelli, P. Stanzione, eds., Plenum Press, New York, pp. 89–98.Google Scholar
  14. Bergman, H., Wichman, T., and DeLong, M.R., 1990, Reversal of experimental parkinsonism by lesions of the subthalamic nucleus,Science 249:1436–1438.PubMedCrossRefGoogle Scholar
  15. Brotchie, J.M., Mitchell, I.J., Sambrook, M.A., and Crossman, A.R., 1991, Allievation of parkinsonism by antagonism of excitatory amino-acid transmission in the medial segment of the globus pallidus in rat and primate,Mov. Disord. 6:133–138.PubMedCrossRefGoogle Scholar
  16. Canteras, N.S., Shammah-Lagnado, S.J., Silva, B.A., and Ricardo, J.A., 1988, Somatosensory inputs to the subthalamic nucleus:a combined retrograde and anterograde horseradish peroxidase study in the rat,Brain Res. 458:53–64.PubMedCrossRefGoogle Scholar
  17. Carpenter, M.B., and Mettler, F.A., 1951, Analysis of subthalamic hyperkinesia in the monkey with special reference to ablation of agranular cortex,J. Comp. Neurol. 95:125–158.PubMedCrossRefGoogle Scholar
  18. Carpenter, M.B., and Carpenter, C.S., 1951, Analysis of somatotopic relations of the corpus Luysi in man and monkey,J. Comp. Neurol. 95:349–370.PubMedCrossRefGoogle Scholar
  19. Césaro, P., Nguyen-Legros, J., Polin, B., and Laplante, S., 1985, Single intralaminar thalamic neurons project to cerebral cortex, striatum and nucleus reticualaris thalami: A retrograde anatomical tracing study in the rat,Brain Res. 325:29–37.PubMedCrossRefGoogle Scholar
  20. Crossman, A.R., 1987, Primate models of dyskinesia:the experimental approach to the study of basal-ganglia related involuntary movements disorders,Neuroscience 21:1–40.PubMedCrossRefGoogle Scholar
  21. Crossman, A.R., Sambrook, M.A., and Jackson, A., 1984, Experimental hemichorea/hemiballismus in the the monkey. Studies of the intracerebral site of action in a drug induced dyskinesia,Brain 107:579–596.PubMedCrossRefGoogle Scholar
  22. DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin,Trends Neurosci. 13:281–285.PubMedCrossRefGoogle Scholar
  23. DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus:functional organization,J. Neurophysiol. 53:530–543.PubMedGoogle Scholar
  24. Dubé, L., Smith, A.D., and Bolam, J.P., 1988, Identification of synaptic terminals of thalamic or cortical origin in contact with distinct medium size spiny neurons in the rat neostriatum,J. Comp. Neurol. 267:455–471.PubMedCrossRefGoogle Scholar
  25. Féger, J., and Crossman, A.R., 1984, Identification of different subpopulations of neostriatal neurones projecting to globus pallidus or substantia nigra in the monkey:a retrograde fluorescence double-labelling study,Neurosci. Lett. 49:7–12.PubMedCrossRefGoogle Scholar
  26. Féger, J., Mouroux, M., 1991, Mise en evidence de l’effet excitateur de l’efférence thalamo-subthalamique issue du noyau parafasciculaire,C. R. Acad. Sci. Paris, 313 série III:447–452.PubMedGoogle Scholar
  27. Féger, J., Robledo, P., and Renwart, N., 1991, The subthalamic nucleus:new data, new questions,in: “The Basal Ganglia III,” G. Bernardi, M.B. Carpenter, G.D. Chiara, M. Morelli, and P. Stanzione, eds., Plenum Press, New York, pp. 99–108.Google Scholar
  28. Féger, J., Mraovitch, S., and Mouroux, M., 1992, The thalamic parafascicular projection to the subthalamic nucleus:a glutamatergic excitatory pathway,Neuroscience Abstract 18:136–5.Google Scholar
  29. Féger, J., Vezole, I., Renwart, N., Robledo, P., 1989, The rat subthalamic nucleus: electrophysiological and behavioural data,in: “Neural mechanisms in disorders of movement,” A.R. Crossman, M.A. Sambrook, eds., John Libbey, London, pp. 37–43Google Scholar
  30. Gerfen, C.R., 1992, The neostriatal mosaic:multiple levels of compartmental organization,Trends Neurosci. 15:133–139.PubMedCrossRefGoogle Scholar
  31. Graham, W.C., Robertson, R.G., Sambrook, M.A., and Crossman, A.R., 1990, Injection of excitatory amino-acid antagonists into the pallidal segment of a l-methyl-4 phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated primate reverses motor symptoms of parkinsonism,Life Sci. 47:91–97.CrossRefGoogle Scholar
  32. Groenewegen, H.J., and Berendse, H.W., 1990, Connections of the subthalamic nucleus with ventral striatopallidal parts of the basal ganglia in the rat,J. Comp. Neurol. 294:607–622.PubMedCrossRefGoogle Scholar
  33. Hamada, I., and Delong, M.R., 1992a, Excitotoxic acid lesions of the primate subthalamic nucleus result in transient dyskinesias of the contralateral limbs,J. Neurophysiol. 68:1850–1858.Google Scholar
  34. Hamada, I., and Delong, M.R., 1992b, Excitotoxic acid lesions of the primate subthalamic nucleus result in reduced pallidal neuronal activity during active holding,J. Neurophysiol. 68:1859–1866.PubMedGoogle Scholar
  35. Hammond, C, Deniau, J.M., Rouzaire-Dubois, B., and Féger, J., 1978, Peripheral input to the rat subthalamic nucleus, an electrophysiological study,Neurosci. Lett. 9:171–176.PubMedCrossRefGoogle Scholar
  36. Hammond, C, Féger, J., Bioulac, B., and Souteyrand, J.P., 1979, Experimental hemiballism in the monkey produced by unilateral kainic acid lesion in corpus luysi,Brain Res. 171:577–580.PubMedCrossRefGoogle Scholar
  37. Hammond, C, Rouzaire-Dubois, B., Féger, J., Jackson, A., and Crossman, A.R., 1983, Anatomical and electrophysiological studies on the reciprocal projections between the subthalamic nucleus and the nucleus tegmenti pedonculopontinus in the rat nucleus,Neuroscience 9:41–55.PubMedCrossRefGoogle Scholar
  38. Hartmann-Von Monakow, K., Akert, K., and Künzle, H., 1978, Projections of the precentrai motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey,Exp. Brain Res. 33:395–403.Google Scholar
  39. Hoover, J.E., and Strick, P.L., 1993, Multiple output channels in the basal ganglia,Science 259:819–821.PubMedCrossRefGoogle Scholar
  40. Horak, F.B., and Anderson, M.E., 1984, Influence of globus pallidus on arm movements in monkeys,J. Neurophysiol. 52:290–304.PubMedGoogle Scholar
  41. Kincaid, A.E., Penney, J.B., Young, A.B., and Newman, S.W., 1991, The globus pallidus receives a projection from the parafascicular nucleus in the rat,Brain Res. 553:18–26.PubMedCrossRefGoogle Scholar
  42. Kitai, S.T., and Deniau, J.M., 1981, Cortical inputs to the subthalamic nucleus: intracellular analysis,Brain Res. 214:411–415.PubMedCrossRefGoogle Scholar
  43. Kitai, S.T., Kita, H.,1987, Anatomy and physiology of me subthalamic nucleus: a driving force of the basal ganglia,in: “The Basal Ganglia II, Structure and Function — Current concepts,”, M.B. Carpenter, A. Jayaraman, eds., Plenum Press, New York, pp. 357–373.Google Scholar
  44. Kocsis, J.D., Sugimori, M. and Kitai, S.T., 1977, Convergence of excitatory synaptic inputs to caudate spiny neurones,Brain Res. 124:403–413.PubMedCrossRefGoogle Scholar
  45. Lapper, S.R., and Bolam, J.P., 1992, Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat,Neuroscience 51:533–545.PubMedCrossRefGoogle Scholar
  46. Lehmann, J., and Scatton, B., 1982, Characterization of the excitatory amino acid receptor-mediated release of [3H]acetylcholine from rat striatal slices,Brain Res. 252:77–89.PubMedCrossRefGoogle Scholar
  47. Martin, J.P., 1967, “The basal ganglia and Posture,” Pitman Medical, London.Google Scholar
  48. Matsumara, M., Kojima, J., Gardiner, T. W., and Hikosaka, O., 1992, Visual and oculomotor functions of monkey subthalamic nucleus,J. Neurophysiol. 67:1615–1632.Google Scholar
  49. Miller, W.C., DeLong, M.R., 1987, Altered tonic activity of neurons in the globus pallidus and subthalamic nucleus in the primate MPT model of Parkinsonism,in: “The Basal Ganglia II, Structure and Function—Current concepts,” M.B. Carpenter, A. Jayaraman, eds., Plenum Press, New York, pp. 415–427.Google Scholar
  50. Mink, J.W., and Thach, W.T., 1991, Basal ganglia motor control:III Pallidal ablation:normal reaction time, muscle contraction and slow movement,J. Neurophysiol. 65:330–351.PubMedGoogle Scholar
  51. Mitchell, I.J., Clarke, CE., Boyce, S., Robertson, R.G., Peggs, D., Sambrook, M.A., and Crossman, A.R., 1989, Neural mechanisms underlying parkinsonian symptoms based upon regional uptake of 2-deoxyglucose in monkeys exposed to l-methyl-4-phenyl-1,23,6-tetrahydropyridine (MPTP), Neuroscience 32:213–226.PubMedCrossRefGoogle Scholar
  52. Mouroux, M. Féger, J., 1993, Evidence that the parafascicular projection to the subthalamic nucleus is glutamatergic,Neuroreport 4: in press.Google Scholar
  53. Nieoullon, A., Scarfone, E., Kerkerian, L., Errami, M., and Dusticier, N., 1985, Changes in choline acetyltransferase, glutamate decarboxylase, high affinity glutamate uptake and dopaminergic activity induced by kainic lesion of the the thalamostriatal neurons,Neurosci. Lett. 58:299–304.PubMedCrossRefGoogle Scholar
  54. Parent, A.,1986, “Comparative Neurobiology of the Basal ganglia,” J. Wiley, New York.Google Scholar
  55. Parent, A., Hazrati, L.-N., Smith, Y., 1989, The subthalamic nucleus in primates. A neuroanatomical and immunohistochemical study,in: “Neural mechanisms in disorders of movement,” A.R. Crossman, M.A. Sambrook, eds., John Libbey, London, pp. 29–35.Google Scholar
  56. Parent, A. and Hazrati, L.N., 1993, Anatomical aspects of information processing in primate basal ganglia,Trends Neurosci. 16:111–116.PubMedCrossRefGoogle Scholar
  57. Patel, S., Slater, P., and Crossman, A.R., 1985, A lesioning and 2-deoxyglucose study of the hyperactivity produced by an intra accumbens agonist,Naunyn Schmiedbergs Arch. Pharmacol. 331:334–340.CrossRefGoogle Scholar
  58. Robertson, G.S., Vincent, S.R., and Fibiger, H.C., 1992, Dl and D2 dopamine receptors differentially regulatec-fosexpression in striato nigral and striatopallidal neurons,Neuroscience 49:285–296.PubMedCrossRefGoogle Scholar
  59. Robertson, R.G., Farmery, S.M., Sambrook, M.A., and Crossman, A.R., 1989, Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus,Brain Res. 476:317–322.PubMedCrossRefGoogle Scholar
  60. Robledo, P., and Féger, J., 1990, Excitatory influence of rat subthalamic nucleus to subtantia nigra pars reticulata and the pallidal complex: electrophysiological data,Brain Res. 518:47–54.PubMedCrossRefGoogle Scholar
  61. Robledo, P., Vezolle, I., and Féger, J., 1988, Mise en evidence d’un effet excitateur des efférences subthalamo-nigrales et subthalamo-pallidales chez le rat,C. R. Ac. Sci. 307:133–138.Google Scholar
  62. Rouzaire-Dubois, B., Hammond, C, Hamon, B., and Féger, J., 1980, Pharmacological blockade of the globus pallidus-induced inhibitory responses of the subthalamic cells in the rat,Brain Res. 200:321–329.PubMedCrossRefGoogle Scholar
  63. Rouzaire-Dubois, B., and Scarnati, E., 1985, Bilateral corticosubthalamic nucleus projections:an electrophysiological study in rats with chronic cerebral lesions,Neuroscience 15:69–79.PubMedCrossRefGoogle Scholar
  64. Rouzaire-Dubois, B., and Scarnati, E., 1987, Pharmacological study of the cortical-induced excitation of subthalamic nucleus neurones in the rat:evidence for amino acids as putative neurotransmitters,Neuroscience 21:429–440.PubMedCrossRefGoogle Scholar
  65. Ryan, L. J., and Clark, K. B., 1992, Alteration of neuronal responses in the subthalamic nucleus following globus pallidus and neostriatal lesions in rats,Brain Res. Bull. 29:319–327.PubMedCrossRefGoogle Scholar
  66. Sadikot, A. F., Parent, A., and François, C, 1992, Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey:A PHA-L study of subcortical projections,J.Comp..Neurol. 315:137–159.PubMedCrossRefGoogle Scholar
  67. Saelens,J.K., Edwards-Neak, S., Simke, J.P., 1977, Further evidence for cholinergic thalamostriatal neurons,J. Neurochem. 32:1093–1094.CrossRefGoogle Scholar
  68. Scatton, B., and Lehmann, J., 1982, N-methyl-d-aspartate-type receptors mediate [3H] acetylcholine release evoked by excitatory amino acids,Nature 297:422–424.PubMedCrossRefGoogle Scholar
  69. Sellal, F., Hirsch, E., Lisovoski, F., Collard, M., and Marescaux, C, 1992, Contralateral disappearance of parkinsonian signs after subthalamic hematoma,Neurology 42:255–256.PubMedGoogle Scholar
  70. Simke, J.P., and Saelens, J.K., 1977, Evidence for a cholinergic tract connecting the thalamus with the head of the striatum in the rat,Brain Res. 126:487–495.PubMedCrossRefGoogle Scholar
  71. Smith, Y., Hazrati, L.-N., and Parent, A., 1990, Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method,J. Comp. Neurol. 294:306–323.PubMedCrossRefGoogle Scholar
  72. Smith, Y., and Parent, A., 1988, Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity,Brain Res. 453:353–356.PubMedCrossRefGoogle Scholar
  73. Sugimoto, T., and Hattori, T., 1983, Confirmation of thalamosubthalamic projections by electron-microscopic autoradiography,Brain Res. 264:335–339.CrossRefGoogle Scholar
  74. Sugimoto, T., Hattori, T., Mizuno, N., Itoh, K., and Sato, M., 1983, Direct projection from the centre médian–parafascicular complex to the subthalamic nucleus in the cat and rat,J. Comp..Neurol. 214:209–216.PubMedCrossRefGoogle Scholar
  75. Whittier, J.R., and Mettler, F.A., 1949, Studies of the subthalamus of the rhesus monkey. II. Hyperkinesia and other physiologic effects of subthalamic lesions, with special references to the subthalamic nucleus of Luys,J. Comp. Neurol. 90:319–372.PubMedCrossRefGoogle Scholar
  76. Wilson, C.J., Chang, H.T., and Kitai, S.T., 1990, Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum,J. Neuroscience 10:508–519.Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Jean Féger
    • 1
  • Mireille Mouroux
    • 1
  • Abdelhamid Benazzouz
    • 2
  • Thomas Boraud
    • 2
  • Christian Gross
    • 2
  • Alan R. Crossman
    • 3
  1. 1.Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques BiologiquesUniversité R. DescartesParisFrance
  2. 2.Laboratoire de Neurophysiologie, CNRS URA 1200Université de Bordeaux IIFrance
  3. 3.Experimental Neurology and Myology group, Department of Cell and Structural BiologyUniversity of Manchester Medical SchoolManchesterGreat Britain

Personalised recommendations