Skip to main content

Regulatory Action of the Dopaminergic Nigrostriatal Pathway on the Corticostriatal Transmission

  • Chapter
  • 138 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 41))

Abstract

The issue of integration versus segregation of information within the basal ganglia has originated a lively controversy that has been largely discussed elsewhere (DeLong, 1990; Alexander and Crutcher, 1990, 1991; Percheron and Filion, 1991; Selemon and Goldman-Rakic, 1991). Briefly, if we consider the organization of the structures through which information is conveyed from the cerebral cortex to the striatum, globus pallidus and substantia nigra, two neuronal systems where transmission of information might be differently carried out can be identified. The first is the corticostriatal system, where signals from different cortical areas have been claimed to reach specific neurons, while the second is the striatopallidonigral system, where evidence for the occurrence of both integration and segregation has been provided.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, G.E., and Crutcher, M.D., 1990, Functional architecture of basal ganglia circuits:neural substrates of parallel processing, Trends Neurosci. 13:266–271.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, G.E., and Crutcher, M.D., 1991, Parallel processing in the basal ganglia:up to a point, Trends Neurosci. 14:56–57.

    Article  Google Scholar 

  • Apicella, P., Scarnati, E., Ljungberg, T., and Schultz, W., 1992, Neuronal activity in monkey striatum related to the expectation of predictable environmental events, J. Neurophysiol.68:945–960.

    PubMed  CAS  Google Scholar 

  • Brown, J.R., and Arbuthnott, G.W., 1983, The electrophysiology of dopamine (D2) receptors:a study of the actions of dopamine on corticostriatal transmission, Neuroscience10:349–355.

    Article  PubMed  CAS  Google Scholar 

  • Brown, L.L., 1988, The function of dopamine in the striatum:a sharpener of sensory information, Neurosci. Abstr. 14:718.

    Google Scholar 

  • Brown, L.L., 1992, Somatotopic organization in rat striatum:evidence for a combinational map, Proc. Natl. Acad. Sci. USA 89:7403–7407.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Maj, R., Mercuri, N.B., and Bernardi, G., 1992, Coactivation of Dl and D2 dopamine receptors is require for long-term synaptic depression in the striatum, Neurosci.Lett. 142:95–99.

    Article  PubMed  CAS  Google Scholar 

  • Calabresi, P., Mercuri, N.B., Stefani, A., and Bernardi, G., 1990, Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis, J. Neurophysiol. 63:651–661.

    PubMed  CAS  Google Scholar 

  • Dafny, N., 1975, Electrophysiological properties of caudate neurons following substantia nigra, motor cortex, and amygdaloid nuclear complex stimulation of the rat, Appl. Neurophysiol. 38:259–272.

    PubMed  CAS  Google Scholar 

  • DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13:281–285.

    Article  PubMed  CAS  Google Scholar 

  • Donoghue, J.P., and Herkenham, M., 1986, Neostriatal projections from individual cortical fields conform to histochemically distinct striatal compartments in the rat, Brain Res. 365:397–403.

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi, A., Pochet, R., and Roger, M., 1992, Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat, Neurosci. Res. 14:39–60.

    Article  PubMed  CAS  Google Scholar 

  • Flaherty, A.W., and Graybiel, A.M., 1991, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J. Neurophysiol. 66:1249–1263.

    PubMed  CAS  Google Scholar 

  • Flaherty, A.W., and Graybiel, A.M., 1991, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J. Neurophysiol. 66:1249–1263.

    PubMed  CAS  Google Scholar 

  • Garcia-Munoz, M., Young, S.J., and Groves, P.M., 1991, Terminal excitability of the corticostriatal pathway. I.Regulation by dopamine receptor stimulation, Brain Res. 551:195–206.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1985 The neostriatal mosaic. I. Compartmental organization of projections from the striatum to the substantia nigra in the rat, J. Comp. Neurol. 236:454–476

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1989, The neostriatal mosaic:striatal patch-matrix organization is related to corticallamination, Science 246:385–388

    Article  PubMed  CAS  Google Scholar 

  • Gerfen, C.R., 1992, The neostriatal mosaic:multiple levels of compartmental organization, Trends Neurosci. 15:133–139.

    Article  PubMed  CAS  Google Scholar 

  • Gonon, F.G., 1988, Non-linear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry, Neuroscience 24:19–28.

    Article  PubMed  CAS  Google Scholar 

  • Graybiel, A.M., 1984, Correspondence between the dopamine islands and striosomes of the mammalian striatum, Neuroscience 13:1157–1187.

    Article  PubMed  CAS  Google Scholar 

  • Herkenham, M., and Pert, C.B., 1981, Mosaic distribution of opiate receptors, parafascicular projections and acetylcholinesterase in rat striatum, Nature 291:415–418.

    Article  PubMed  CAS  Google Scholar 

  • Herrling, P. L., 1985, Pharmacology of the corticocaudate excitatory postsynaptic potential in the cat:evidence for its mediation by quisqualate- or kainite-receptors, Neuroscience 14:417–426.

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka, O., Sakamoto, M., and Usui, S., 1989, Functional properties of monkey caudate meurons. III.Activities related to expectation of target and reward, J. Neurophysiol. 61:814–832.

    PubMed  CAS  Google Scholar 

  • Hirata, K., Yim, C.Y., Mogenson, G.J., 1984, Excitatory input from sensory motor cortex to neostriatum and its modification by conditioning stimulation of the substantia nigra, Brain Res. 321:1–8.

    Article  PubMed  CAS  Google Scholar 

  • Kocsis, J.D., Sugimori, M., and Kitai, S.T., 1977, Convergence of excitatory synaptic inputs to caudate spiny neurons, Brain Res. 124:403–413.

    Article  PubMed  CAS  Google Scholar 

  • Percheron, G., Yelnik, J„ and Francois, C, 1984, The primate striato-pallido-nigral system:an integrative system for cortical information, in: “The Basal Ganglia,” J.S. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Plenum Press, New York, pp. 87–105.

    Google Scholar 

  • Percheron, G., and Filion, M., 1991, Parallel processing in the basal ganglia:up to a point, Trends Neurosci. 14:55–56.

    Article  PubMed  CAS  Google Scholar 

  • Romo, R., Chéramy, A., Godeheu, G., and Glowinski, J., 1986, In vivo presynaptic control of dopamine release in the cat caudate nucleus-III. Further evidence for the implication of corticostriatal glutamatergic neurons, Neuroscience 19:1091–1099.

    Article  PubMed  CAS  Google Scholar 

  • Selemon, L.D., and Goldmann-Rakic, P.S., 1985, Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey, J. Neurosci.5:776–794.

    PubMed  CAS  Google Scholar 

  • Selemon, L.D., and Goldman-Rakic, P.S., 1991, Parallel processing in the basal ganglia:up to a point, Trends Neurosci. 14:58–59.

    Article  Google Scholar 

  • Toan, D.L., and Schultz, W., 1985, Responses of rat pallidum cells to cortex stimulation and effects of altered dopaminergic activity, Neuroscience 15:683–694.

    Article  PubMed  CAS  Google Scholar 

  • Tremblay, L., Filion, M., and Bédard, P.J., 1989, Responses of pallidal neurons to striatal stimulation in monkeys with MPTP-induced parkinsonism., Brain Res. 498:17–33.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C. J., and Groves, P.M., 1981, Spontaneous firing patterns of identified spiny neurons in the rat neostriatum, Brain Res. 220:67–80.

    Article  PubMed  CAS  Google Scholar 

  • Zilles, K., Wree, A., 1985, Cortex: areal and laminar structure, in: “The Rat Nervous System,” G. Paxinos, ed., Academic Press, Sydney, pp. 375–415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Plenum Press, New York

About this chapter

Cite this chapter

Scarnati, E., Florio, T., Cerrito, F., Loreto, S.D. (1994). Regulatory Action of the Dopaminergic Nigrostriatal Pathway on the Corticostriatal Transmission. In: Percheron, G., McKenzie, J.S., Féger, J. (eds) The Basal Ganglia IV. Advances in Behavioral Biology, vol 41. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0485-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0485-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-7591-6

  • Online ISBN: 978-1-4613-0485-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics