Further Investigations on the Mechanisms Involved in Intrastriatal Mesencephalic Grafts in the Rat, with Special Reference to Dopamine-Neuropeptide Y Interactions

  • Annie Daszuta
  • Hakima Moukhles
  • Jacqueline Vuillet
  • André Nieoullon
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)


A number of transplantation studies on an animal model for Parkinson’s disease bearing a 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal dopaminergic pathway were carried out since the late 70’s (Björklund and Stenevi, 1979, Perlow et al., 1979). Implanting foetal dopamine (DA) neurons into the striatum of these rats was found to alleviate some Parkinson’s disease like symptoms in the DA deficient recipients. In rats with unilateral lesion, motor impairments such as drug-induced rotational asymmetry were found to be completely abolished after DA grafts, while in more complex conditioned behavior tests, rats remained severely impaired (Björklund et al., 1987). Despite these limitations, human foetal ventral mesencephalic tissue has been implanted into the brain of Parkinsonian patients with variable success. Although there is some ambiguity in the statement that brain grafts can have functional effects, because it contains spontaneously active neurons and releases neurotransmitter, or because it may trigger some adaptive behavioral responses in the host animals, the cellular mechanisms whereby ventral mesencephalic transplants act need to be exactly determined for research on neural transplantation to be able to progress.


Ventral Mesencephalon Fiber Outgrowth Nigrostriatal Dopaminergic Pathway Adaptive Behavioral Response Host Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Becker, J.B., and Ariano, M.A., 1991, Behavioral effects of fetal substantia nigra tissue grafted into the dopamine-denervated striatum:responses to selective D1 and D2 dopamine receptor agonists, Rest. Neurol. Neurosci. 3:187–195Google Scholar
  2. Björklund, A., Lindvall, O., Isacson, O., Brundin, P., Wictorin, K., Strecker, R.E., Clarke, D.J., and Dunnett, S. B., 1987, Mechanisms of action of intracerebral neural implants:studies on nigral and striatal grafts to the lesioned striatum, Trends Neurosci. 10:509–516.CrossRefGoogle Scholar
  3. Björklund, A., and Stenevi, U., 1979, Reconstruction of the nigrostriatal dopamine pathway by intracerebral nigral transplants, Brain Res. 177:555–560.PubMedCrossRefGoogle Scholar
  4. Bohn, M.C., Cupit, L., Marciano, F., and Gash, D.M., 1987, Adrenal medulla grafts enhance recovery of striatal dopaminergic fibers, Science 237:913–916.PubMedCrossRefGoogle Scholar
  5. Cenci, M.A., Kalen, P., Mandel, R.J., Wictorin, K., and Björklund, A., 1992, Dopaminergic transplants normalize amphetamine- and apomorphine-induced Fos expression in the 6-hydroxydopamine- lesioned striatum, Neuroscience 46:934–957.CrossRefGoogle Scholar
  6. Chritin, M., Savasta, M., Mennicken, F., Bal, A., Abrous, D.N., Le Moal, M., Feuerstein, C, and Herman, J.P., 1992, Intrastriatal dopamine-rich implants reverse the increase of dopamine D2 receptor mRNA levels caused by lesion of the nigrostriatal pathway:a quantitative in situ hybridization study, Eur. J. Neurosci. 4:663–672.PubMedCrossRefGoogle Scholar
  7. Clarke, D. J., Brundin, P., Strecker, R. E., Nilsson, O. G., Björklund, A., and Lindvall, O., 1988, Human fetal dopamine neurons grafted in a rat model of Parkinson’s disease:Ultrastructural evidence for synapse formation using tyrosine hydroxylase immunocytochemistry, Exp. Brain Res. 73:115–126.PubMedCrossRefGoogle Scholar
  8. Daszuta, A., Moukhles, H., Forni, C, Dusticier, N., Nieoullon A., 1992, Regulation of dopamine release as monitored by in vivo voltammetry in intrastriatal grafts of fetal mesencephalon neurons, Rest. Neurol. Neurosci. 4:15P32.Google Scholar
  9. Dawson, T. M., Dawson, V. L., Gage, F. H., Fisher, L. J., Hunt, M. A., and Wamsley, J.K., 1991, Functional recovery of supersensitive dopamine receptors after intrastriatal grafts of fetal substantianigra, Exp. Neurol. 111:282–292.PubMedCrossRefGoogle Scholar
  10. Doucet, G., Brundin, P., Descarries, L., and Björklund, A., 1990, Effect of prior dopamine denervation onsurvival and fiber outgrowth from intrastriatal fetal mesencephalic grafts, Eur. J. Neurosci. 2:279–290.PubMedCrossRefGoogle Scholar
  11. Doucet, G., Murata, Y., Brundin, P., Bosler, O., Möns, N., Geffard, M., Ouimet, C.C., and Björklund, A., 1989, Host afferents into intrastriatal transplants of fetal ventral mesencephalon, Exp. Neurol. 106:1–19.PubMedCrossRefGoogle Scholar
  12. Fisher, L.J., Young, S.J., Tepper, J.M., Groves, P.M., and Gage, F.H., 1991, Electrophysiological characteristics of cells within mesencephalon suspension grafts, Neuroscience 40:109–122.PubMedCrossRefGoogle Scholar
  13. Forni, C, Brundin, P., Strecker, R.E., El Ganouni, S., Björklund, A., and Nieoullon A., 1989, Time-course of recovery of dopamine neuron activity during reinnervation of denervated striatum by fetal mesencephalic grafts as assessed by in vivo voltametry, Exp. Brain Res. 76:75–87.PubMedCrossRefGoogle Scholar
  14. Gagnon, C, Bédard, P.J., Rioux, L., Gaudin, D., Martinoli, M.G., Pelletier, G., and Di Paolo, T., 1991, Regional changes of striatal dopamine receptors following denervation by 6-hydroxydopamine and fetal mesencephalic grafts in the rat, Brain Res. 558:251–263.PubMedCrossRefGoogle Scholar
  15. Herman, J.P., Abrous, D.N., and Le Moal, M., 1991, Anatomical and behavioral comparison of unilateral dopamine-rich grafts implanted into the striatum of neonatal and adult rats, Neuroscience 40:465–475.PubMedCrossRefGoogle Scholar
  16. Herman, J.P., Choulli, K., and Le Moal, M., 1985, Activation of striatal dopaminergic grafts by haloperidol, Brain Res. Bull. 15:543–546.PubMedCrossRefGoogle Scholar
  17. Herman, J. P., Lupp, A., Abrous, N., Le Moal, M., Hertting, G., and Jackisch, R., 1988, Intrastriatal dopaminergic grafts restore inhibitory control over striatal cholinergic neurons, Exp. Brain Res. 73:236–248.PubMedCrossRefGoogle Scholar
  18. Horellou, P., Brundin, P., Kalen, P., Mallet, J., and Björklund, A., 1990, In vivo release of DOPA and dopamine from genetically engineered cells grafted to the denervated rat striatum, Neuron 5:393–402.PubMedCrossRefGoogle Scholar
  19. Jackisch, R., Duschek, M., Neufang, B., Rensing, H., Hertting, G., and Herman, J.P., 1991, Long term survival of intrastriatal dopaminergic grafts:Modulation of acetylcholine release by graft-derived dopamine, J. Neurochem. 57:267–276.PubMedCrossRefGoogle Scholar
  20. Kerkerian-Le Goff, L., Salin, P., Vuillet, J., and Nieoullon, A., 1991, NeuropeptideY neurons in the striatal network. Functional adaptive responses to impairment of striatal inputs, in: “The Basal Ganglia III,” G. Bernardi, M.B. Carpenter, G. Di Chiara, M. Morelli and P. Stanzione, eds., Plenum Press, New York, pp. 49–61.Google Scholar
  21. Manier, M., Abrous, D.N., Feuerstein, C, Le Moal, M., and Herman, J.P., 1991, Increase of striatal methionin enkephalin content following lesion of the nigrostriatal dopaminergic pathway in adult rats and reversal following the implantation of embryonic dopaminergic neurons:a quantitative immunohistochemical analysis, Neuroscience 42:427–439.PubMedCrossRefGoogle Scholar
  22. Méndez, I., Elisevich, K., and Flumerfelt, B., 1991, Dopaminergic innervation of substance P-containing striatal neurons by fetal nigral grafts:an ultrastructural double-labeling immunocytochemical study, J. Comp. Neurol. 308:66–78.PubMedCrossRefGoogle Scholar
  23. Moukhles, H., Amalric, M., Nieoullon, A., Daszuta, A., 1992a, Partial recovery of sensorimotor deficits in a conditioned task induced by mesencephalic cells grafted to locally dopamine deafferented striatum in the rat, Rest. Neurol, and Neurosci. 15P30.Google Scholar
  24. Moukhles, H., Nieoulllon, A., and Daszuta, A., 1992b, Early and widespread normalization of dopamine-neuropeptide Y interaction in the rat striatum after transplantation of fetal mesencephalon cells, Neuroscience 4:781–792.CrossRefGoogle Scholar
  25. Nieto-Sampiedro, M., Whittemore, S.R., Needels, D.L., Larson, J., and Cotman, C, 1984, The survival of brain transplants is enhanced by extracts from injured brain, Proc. Natl., Acad. Sci. 81:6250–6254.CrossRefGoogle Scholar
  26. Nishino, H., Hashitani, T., and Kumazaki, M., 1991, Grafting of catecholaminergic cells in the mammalian brain and reconstruction of disturbed function:basic problems to be solved, J. Comp. Biochem. Physiol. 98:211–220.Google Scholar
  27. Nishino, H., Hashitani, T., Kumazaki, M., Sato H, Furuyama F., Isobe Y., Watari N., Kanai M., and Shiosaka S., 1990, Long-term survival grafted cells, dopamine synthesis/release, synaptic connections, and functional recovery after transplantation of fetal nigral cells in rats with unilateral 6-OHDA lesions in the nigrostriatal dopamine pathway, Brain Res. 534:83–93.PubMedCrossRefGoogle Scholar
  28. Perlow, M.J., Freed, W.J., Hoffer, B.J., Seiger, A., Olson, L., and Wyatt, R.J., 1979, Brain grafts reduce motor abnormalities produced by destruction of nigrostriatal dopamine system, Science 204:643–646.PubMedCrossRefGoogle Scholar
  29. Prochiantz, A., Diporzio, U., Kato, A., Berger, B., and Glowinski J., 1979, In vitro maturation of mesencephalic dopamine neurons from mouse embryos is enhanced in presence of their striatal target cells, Proc. Natl. Acad. Sci. 76:5387–5391.PubMedCrossRefGoogle Scholar
  30. Rioux, L., Gaudin, C., Bui, L.K., Gregoire, L., Di Paolo, T., and Bédard, P.J., 1991, Correlation of functional recovery after 6-hydroxydopamine lesion with survival of grafted fetal neurons and release of dopamine in the striatum of the rat, Neuroscience 40:123–131.PubMedCrossRefGoogle Scholar
  31. Robertson, G.S., Fine, A., and Robertson, H.A., 1991, Dopaminergic grafts in the striatum reduce Dl but not D2 receptor–mediated rotation in 6-OHDA-lesioned rats, Brain Res. 539:304–311.PubMedCrossRefGoogle Scholar
  32. Segovia, J., Meloni, R., and Gale, K., 1989, Effect of dopaminergic denervation and transplant–derived reinnervation on a marker of striatal GABAergic function, Brain Res. 493:185–189.PubMedCrossRefGoogle Scholar
  33. Strecker, R. E., Sharp, T., Brundin, P., Zetterström,T., Ungerstedt, U., and Björklund, A., 1987, Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis, Neuroscience 22:169–178.PubMedCrossRefGoogle Scholar
  34. Van Horne, CG., Strömberg, I., Young, D., Olson, L., and Hoffer, B., 1991, Functional enhancement of intrastriatal dopamine-containing grafts by the co-transplantation of sciatic nerve tissue in 6-hydroxydopamine-lesioned rats, Exp. Neurol. 113:143–154.PubMedCrossRefGoogle Scholar
  35. Winn, S.R., Tresco, P.A., Zielinski, B., Greene, L.A., Jaeger, C.B., and Aebischer, P., 1991, Behavioral recovery following intrastriatal implantation of microencapsulated PC12 cells, Exp. Neurol. 113:322–329.PubMedCrossRefGoogle Scholar
  36. Yurek, D.M., Collier, T.J., and Sladek, J.R., 1990, Embryonic mesencephalic and striatal co-grafts:development of grafted dopamine neurons and functional recovery, Exp. Neurol. 109:191–199.PubMedCrossRefGoogle Scholar
  37. Zetterström, T., Brundin, P., Gage, F.H., Sharp, T., Isacson, O., Dunnett, S.B., Ungerstedt, U., and Björklund, A., 1986, In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis, Brain Res. 362:344–349.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Annie Daszuta
    • 1
  • Hakima Moukhles
    • 1
  • Jacqueline Vuillet
    • 1
  • André Nieoullon
    • 1
  1. 1.Laboratoire de Neurobiologie Cellulaire et Fonctionnelle duCNRSMarseilleFrance

Personalised recommendations