Mechanisms of Neuronal Degeneration in Huntington’s Disease

  • Robert J. Ferrante
  • M. Flint Beal
  • Neil W. Kowall
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)


Two complementary research strategies have been undertaken to define the mechanisms of neuronal degeneration in Huntington’s disease (HD) (Kowall et al., 1987; Ferrante, 1991). Because HD is an autosomal dominant disease caused by a specific mutation localized to the telomeric region of the short arm of chromosome four, a great deal of effort has been directed to finding the gene locus responsible for the disease (Gusella et al., 1986). Although the gene has recently been identified, the specific biochemical abnormality that causes HD and the mechanism of neuronal degeneration has not yet been determined (Huntington’s Disease Collaborative Research Group, 1993). This strategy has made it possible to diagnose presymptomatic individuals and has contributed to mapping studies of the human genome. A second complementary strategy that we and others have used has been to define the specific changes that occur in HD brain and explore animal models that recreate these pathological alterations (Kowall et al., 1987; Beai et al., 1989a and b, 1991a and b; Albin et al., 1990; DiFiglia, 1990; Ferrante, 1991; Ferrante et al., 1992, 1993;).


Neuronal Degeneration Neural Cell Adhesion Molecule Kainic Acid Quinolinic Acid Striatal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albin, R.L., Reiner, A., Anderson, K.D., Penney, J.B., and Young, A.B., 1990, Striatal and nigral neuron subpopulations in rigid Huntington’s disease:Implications for the functional anatomy of chorea and rigidity-akinesia, Ann. Neurol. 27:357–365.PubMedCrossRefGoogle Scholar
  2. Albin, R., and Greenamyre, J.T., 1992, Alternative excitotoxic hypotheses, Neurology 42:733–738.PubMedGoogle Scholar
  3. Bast, A., Haenen, G., Doelman, C., 1991, Oxidants and antioxidants: State of the art, Am. J. Med. 91(3C):2S–13S.CrossRefGoogle Scholar
  4. Beal, M.F., Kowall, N.W., Ellison, D.W., Mazurek, M.F., Swartz, K.J., and Martin, J.B., 1986, Replication of the neurochemical characteristics of Huntington’s disease with quinolinic acid, Nature 321:168–171.PubMedCrossRefGoogle Scholar
  5. Beal, M.F., and Martin, J.B., 1986, Neuropeptides in neurological disease, Ann. Neurol. 20:547–565.PubMedCrossRefGoogle Scholar
  6. Beal, M.F., Kowall, N. W., Swartz, K. J., Ferrante, R. J., and Martin, J. B., 1988a, Systemic approaches to modifying quinolinic acid striatal lesions in rats, J. Neurosci. 10:3901–3908.Google Scholar
  7. Beal, M.F., Ellison, D.W., Mazurek, M.F., Swartz, K.S., Malloy, J.R., Bird, E.D., Martin, J.B.,1988b, A detailed examination of substance P in pathologically graded cases of Huntington’s disease,J.Neurol. Sci. 84:51–61.PubMedCrossRefGoogle Scholar
  8. Beal, M.F., Kowall, N.W., Ferrante, R.J., and Cipolloni, P.B., 1989a, Quinolinic acid striatal lesions in primates as a model of Huntington’s disease, Ann. Neurol. 26:137.Google Scholar
  9. Beal, M.F., Kowall, N.W., Swartz, K.J., Ferrante, R.J., and Martin, J.B., 1989b, Differential sparing of somatostatin-neuropeptide Y and cholinergic neurons following striatal excitotoxin lesions, Synapse 3:38–47.PubMedCrossRefGoogle Scholar
  10. Beal, M.F., Swartz, K.J., Hyman, B.T., Storey, E., Finn, S.F., and Koroshetz, W., 1991a, Amino-oxyacetic acid results in excitotoxin lesions by a novel indirect mechanism, J. Neurochem. 57:1068–1073.PubMedCrossRefGoogle Scholar
  11. Beal, M.F., Ferrante, R.J., Swartz, K.J., and Kowall, N.W., 1991b, Chronic quinolinic acid lesions in rats closely resemble Huntington’s disease, J. Neurosci. 11:1649–1659.PubMedGoogle Scholar
  12. Beal, M.F., 1992, Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative disease?, Ann. Neurol. 31:119–130.PubMedCrossRefGoogle Scholar
  13. Besson, M.J., Graybiel, A.M., and Quinn, B., 1990, Co-expression of neuropeptides in the cat’s striatum:an immunohistochemical study of substance P, dynorphin and enkephalin, Neurosci. 39:33–58.CrossRefGoogle Scholar
  14. Bolam, J.P., Somogyi, P., Takagi, H., Fodor, I., and Smith, A.D., 1983, Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat:a correlated light and electron microscopic study, Neurocytol. 12:325–344.CrossRefGoogle Scholar
  15. Brennan, W.A.J., Bird, È.D., Aprille, J.R.,1985, Regional mitochondrial respiratory activity in Huntington’s disease brain, J. Neurochem. 44:1948–1950.PubMedCrossRefGoogle Scholar
  16. Brouillet, E., Jenkins, B.G., Hyman, B.T., Ferrante, R.J., Kowall, N.W., Srivastava, R., Roy, D.S., Rosen, B.R., and Beal, M.F., 1993, Age-dependent vulnerability of the striatum to the mitochondrial toxin 3-nitropropionic acid, J. Neurochem. 60:356–359.PubMedCrossRefGoogle Scholar
  17. Chesselet, M.F., Affolter, H.U.,1987, Preprotachykinin messenger RNA detected by insitu hybridization in striatal neurons of the human brain, Brain Res. 410:83–88PubMedCrossRefGoogle Scholar
  18. Cole, A.J., Saffen, D.W., Baraban, J.M., and Worley, P.F., 1989, Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation, Nature 340:474–476.PubMedCrossRefGoogle Scholar
  19. Coyle, J.T., and Schwarcz, R., 1976, Lesion of striatal neurons with kainic acid provides a model for Huntington’s chorea, Nature 263:244–246.PubMedCrossRefGoogle Scholar
  20. Crossman, A.R., 1987, Primate models of dyskinesia:The experimental approach to the study of basal ganglia-related involuntary movement disorders, Neurosci. 21:1–40.CrossRefGoogle Scholar
  21. Crossman, A.R., Mitchell, I.J., Sambrook, M.A., Jackson, A.,1988, Chorea and myoclonus in the monkey induced by gamma-aminobutyric acid antagonism in the lentiform complex, Brain 111:1211–1233.PubMedCrossRefGoogle Scholar
  22. Dawbarn, D., DeQuidt, M.E., and Emson, P.C., 1985, Survival of basal ganglia neuropeptide Y-somatostatin neurones in Huntington’s disease, Brain Res. 340:251–261.PubMedCrossRefGoogle Scholar
  23. Dawson, T.M., Bredt, D.S., Fotuhi, M., Hwang, P., Snyder, S.H.,1991a, Nitric oxide synthase and neuronal NADPH diaphorase are identical in brain and peripheral tissue, Proc. Natl. Acad. Sci. USA 88:7797–7801.PubMedCrossRefGoogle Scholar
  24. Dawson, V. L., Dawson, T.M., London, E.D. Bredt, D.S., and Snyder, S.H., 1991b, Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures, Proc. Natl. Acad. Sci. USA 88:6368–6371.PubMedCrossRefGoogle Scholar
  25. DeLong, M.R., 1990, Primate models of movement disorders of basal ganglia origin, Trends Neurosci. 13:281–285.PubMedCrossRefGoogle Scholar
  26. DiFiglia, M., 1990, Excitotoxic injury of the neostriatum:a model for Huntington’s disease, Trends neurosci. 13:286–289.PubMedCrossRefGoogle Scholar
  27. Evans, A.J., and Kowall, N.W., 1991, Ubiquitin immunoreactivity is increased in Huntington’s disease cerebral cortex, Soc. Neurosci. Abstr. 17:1450.Google Scholar
  28. Fallon, J.H., 1987, Growth factors in the basal ganglia, in: “Neurotoxins and Their Pharmocologic Implications,” P. Jenner, ed., Raven Press, New York, pp. 247–260.Google Scholar
  29. Faull, R.L.M., Dragunow, M., Villiger, J.W.,1989, The distribution of neurotensin receptors and acetylcholinesterase in the human caudate nucleus: evidence for the existence of a third neurochemical compartment, Brain Res. 488:381-385.PubMedCrossRefGoogle Scholar
  30. Faull, R.L.M., Waldvogel, HJ., Nicholson, L.F.B., and Synek, B.J.L., 1993, The distribution of GABA-bezodiazepine receptors in the basal ganglia in Huntington’s disease and the quinolinic acid lesioned rat, Prog. Brain Res. in press.Google Scholar
  31. Ferrante, R.J., Kowall, N.W., Beai, M.F., Richardson, E.P. Jr, Bird, E.D., and Martin, J.B., 1985, Selective sparing of a class of striatal neurons in Huntington’s disease, Science. 230:561–563.PubMedCrossRefGoogle Scholar
  32. Ferrante, R.J., Kowall, N.W., Beai, M.F., Richardson, E.P. Jr, Bird, E.D., and Martin, J.B., 1986, Topography of enkephalin, substance P, and acetylcholinesterase staining in Huntington’s disease striatum, Neurosci. Lett. 71:283–288.PubMedCrossRefGoogle Scholar
  33. Ferrante, R.J., Kowall, N.W., Beal, M.F., Martin, J.B., Bird, E.D., and Richardson, E.P. Jr, 1987a, Morphologic and histochemical characteristics of a spared subset of striatal neurons in Huntington’s disease, J. Neuropathol. Exp. Neurol. 46:12–27.PubMedCrossRefGoogle Scholar
  34. Ferrante, R.J., and Kowall, N.W., 1987b, Tyrosine hydroxylase-like immunoreactivity is distributed in the matrix compartment of normal human and Huntington’s disease striatum, Brain Res. 416:141–146.PubMedCrossRefGoogle Scholar
  35. Ferrante, R.J., Beal, M.F., Kowall, N.W., Richardson, E.P. Jr, and Martin, J.B., 1987c, Sparing of acetylcholinesterase-containing striatal neurons in Huntington’s disease, Brain Res. 411:162–166.PubMedCrossRefGoogle Scholar
  36. Ferrante, R.J., Kowall, N.W., Hersh, L.B., Bruce, G., and Richardson, E.P. Jr, 1987d, Colocalization of cholineacetyltransferase- and acetyl-cholinesterase-containing neurons in Huntington’s disease, Soc. Neurosci. Abstr. 13:1030.Google Scholar
  37. Ferrante, R.J., Kowall, N.W., Martin, J.B., and Richardson, E.P. Jr, 1987e, Substance P-containing striatal neurons in Huntington’s disease, J. Neuropathol. Exp. Neurol. 46:375.CrossRefGoogle Scholar
  38. Ferrante, RJ., Kowall, N.W., Richardson, E.P.Jr,1988, Patch-matrix distribution of cholecystokinin and cytochrome oxidase activity in normal and Huntington’s disease striatum, Soc. Neursci. Abstr. 14:1046.Google Scholar
  39. Ferrante, R.J., Kowall, N.W., and Richardson, E.P. Jr, 1989, Neuronal and neuropil loss in the substantia nigra in Huntington’s disease, J. Neuropathol. Exp. Neurol. 48:380.CrossRefGoogle Scholar
  40. Ferrante, RJ., Kowall, N.W., Harrington, K., and Richardson, E.P. Jr, 1990, Terminal striatal substance P and met enkephalin projections in the globus pallidus are equally affected in Huntington’s disease, J. Neurosci. 16:1120.Google Scholar
  41. Ferrante, R.J., Kowall, N.W., and Richardson, E.P. Jr, 1991, Proliferative and degenerative changes in striatal spiny neurons in Huntington’s disease:A combined study using the section Golgi method and calbindin D28k immunocytochemistry, J. Neurosci. 11:3877–3887.PubMedGoogle Scholar
  42. Ferrante, R.J., 1991, Huntingtons disease:morphometric and immune- cytochemical alterations, in: “New Issues in Neuroscience, Basal Ganglia and Movement Disorders.,” A. Bignami, ed., Thieme, New York, pp. 191–201.Google Scholar
  43. Ferrante, R.J., Kowall, N.W., Brouillet, E., and Beal, M.F., 1992, Impaired mitochondrial metabolism reflects the striatal pathology in Huntington’s disease, Soc. Neurosci. Abstr. 18:167.Google Scholar
  44. Ferrante, R.J., Kowall, N.W., Cipolloni, P.B., Storey, E., and Beal, M.F., 1993, Excitotoxin lesions in primates as a model for Huntington’s disease: Histopathologic and neurochemical characterization, Exper. Neurol. 119:46–71.CrossRefGoogle Scholar
  45. Forno, L.S., Jose, C.,1973, Huntington’s chorea: a pathological study, in: “Huntington’s Chorea,” A. Barbeau, T. N. Chase, G.W. Paulson, eds., 1872-1972, Raven Press, New York, pp. 453–470.Google Scholar
  46. Friede, R.L., 1962, The relation of the formation of lipofuscin to the distribution of oxidative enzymes in the human brain, Acta Neuropathol. 2:113–125.CrossRefGoogle Scholar
  47. Gerfen, C.R., 1985, The neostriatal mosaic:I. Compartmental organization of projections from the striatum to the substantianigra in the rat, J. Comp. Neurol. 236:454–476.PubMedCrossRefGoogle Scholar
  48. Gerfen, CR., Baimbridge, K.G., and Miller, J.J., 1985, The neostriatal mosaic:compartmental distribution of calcium-binding protein and parvalbumin in the basal ganglia of the rat and monkey, Proc. Natl. Acad. Sci. USA 82:8780–8784.PubMedCrossRefGoogle Scholar
  49. Graveland, G.A., Williams, R.S., and DiFiglia, M.A., 1985a, Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington’s disease, Science 227:770–773.PubMedCrossRefGoogle Scholar
  50. Graveland, G.A., Williams, R.S., and DiFiglia, M.A., 1985b, A Golgi study of the human neostriatum:Neurons and afferent fibers, J. Comp. Neurol. 234:317–333.PubMedCrossRefGoogle Scholar
  51. Graybiel, A.M., Ragsdale, C.W., 1983, Biochemical anatomy of the striatum, in: “Chemical Neuroanatomy,” P.C. Emson, ed., Raven Press, New York, pp. 427–504.Google Scholar
  52. Gusella, J.F., Gilliam, T.C., Tanzi, R.E., MacDonald, M.E., and Cheng, S. V., 1986, Molecular genetics of Huntington’s disease, Cold Spring Harb. Symp. Quant. Biol. 1:359–364.Google Scholar
  53. Hadjiconstantinou, M., Tjioe, S., Alho, H., Miller, C, and Neff, N.H., 1987, MPTP accelerates the accumulation of lipofuscin in mouse adrenal gland, Neurosci. Lett. 83:1–6.PubMedCrossRefGoogle Scholar
  54. Halliwell, B., and Gutteridge, J., 1990, Role of free radicals and catalytic metal ions in human disease:An overview, Meth. Enzymol. 186:1–85.PubMedCrossRefGoogle Scholar
  55. Harman, D., 1989, Lipofuscin and ceroid formation:the cellular recycling system, Adv. Exp. Med. Biol. 266:3–15.PubMedGoogle Scholar
  56. Harrington, K.M., Ferrante, R.J., and Kowall, N.W., 1991, Evidence for neuronal degeneration in the subthalamic nucleus in Huntington’s disease, Soc. Neurosci. Abs. 17:1449.Google Scholar
  57. Hatefi, Y., 1985, The mitochondrial electron transport and oxidative phosphorylation system, Ann. Rev. Biochem. 54:1015–1069.PubMedCrossRefGoogle Scholar
  58. Hope, B.T., Michael, G.J., Kniggen K.M., Vincent, S.R.,1991, Neuronal NADPH diaphorase is a nitricoxide synthase, Proc. Natl. Acad. Sci. USA 88:2811-2814.PubMedCrossRefGoogle Scholar
  59. Huntington’s Disease Collaborative Research Group, 1993, A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes, Cell in press.Google Scholar
  60. Jenkins, B.G., Koroshetz, W.J., Beal, M.F., Rosen, B.R., 1992, Localized proton-NMR spectroscopy in patients with Huntington’s disease (HD) demonstrates abnormal lactate levels in occipital cortex: Evidence for compromised metabolism in HD, Neurology in press.Google Scholar
  61. Kowall, N.W., Ferrante, R.J., Martin, J.B.,1987, Patterns of cell loss in Huntington’s disease, TINS 10:24–29.Google Scholar
  62. Larsson, N.-G., Andersen, O., Home, E., Oldfors, A., and Wahlstrom, J., 1991, Leber’s hereditary optic neuropathy and Complex I deficiency in muscle, Ann. Neurol. 30:701–708.PubMedCrossRefGoogle Scholar
  63. Lindquist, S., and Craig, E.A., 1988, The heat shock proteins, Ann. Rev. Genetics 22:631–677.CrossRefGoogle Scholar
  64. Linnane, A.W., Marzuki, S., Ozawa, T., Tanaka, M., 1989, Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases, Lancet i:642–645.CrossRefGoogle Scholar
  65. Lowe, J., and Mayer, R.J., 1990, Ubiquitin, cell stress and diseases of the nervous system, Neuropath. Appl. Neurobiol. 16:281–291.CrossRefGoogle Scholar
  66. Mann, V.M., Cooper, J.M., Javoy-Agid, F., Agid, Y., Jenner, P., and Schapira, A.H.V., 1990, Mitochondrial function and parental sex effect in Huntington’s disease, Lancet 336:749.PubMedCrossRefGoogle Scholar
  67. Mariani, A.P., Neff, N.H., and Hadjiconstantinou, M., 1986, MPTP treatment decreases dopamine and increases lipofuscin in mouse retina, Neurosci. Lett. 72:221–226.PubMedCrossRefGoogle Scholar
  68. Marshall, P.E., Landis, D.M.D., and Zlaneritis, E.L., 1983, Immunocytochemical studies of substance P and leu-enkephalin in Huntington’s disease, Brain Res. 289:11–26.PubMedCrossRefGoogle Scholar
  69. McGeer, E.G., and McGeer, P.L., 1976, Duplication of biochemical changes of Huntington’s disease by intrastriatal injections of glutamic and kainic acids, Nature 263:517–519.PubMedCrossRefGoogle Scholar
  70. Mettler, F.A., 1972, Choreoathetosis and striopallidal necrosis due to sodium azide, Exp. Neurol. 34:291–308.PubMedCrossRefGoogle Scholar
  71. Morgan, J.I., and Curran, T., 1991, Stimulus-transcription coupling in the nervous system:involvement of the inducible proto-oncogenes fosand jun, Ann. Rev. Neurosci. 14:421–452.PubMedCrossRefGoogle Scholar
  72. Meyers, R.H., Vonsattel, J.P., Stevens, T.J., Cupples, L.A., Richardson, E.P., Martin, J.B., and Bird, E.D., 1988, Clinical and neuropathologic assessment of severity in Huntington’s disease, Neurology 38:341–347.Google Scholar
  73. Nihei, K., Kowall, N.W.,1992, Neurofilament and neural cell adhesion molecule immunocytochemistry of Huntington’s disease striatum, Ann. Neurol. 31:59-63.PubMedCrossRefGoogle Scholar
  74. Novelli, A., Reilly, J.A., Lysko, P.G., and Henneberry, R.C., 1988, Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced, Brain Res. 451:205–212.PubMedCrossRefGoogle Scholar
  75. Olney, J.W. (1978) Neurotoxicity of excitatory amino acids, in: “Kainic Acid as a Tool in Neurobiology,” J.W., Olney, R.L. McGeer, eds., Raven Press, New York, pp. 95–122.Google Scholar
  76. Oyanagi, K., Takeda, S., Takahashi, H., Ohama, E., and Ikuta, F., 1989, A quantitative investigation of the substantia nigra in Huntington’s disease, Ann. Neurol. 26:13–19.PubMedCrossRefGoogle Scholar
  77. Parent, A., Csonka, C, and Etienne, P., 1984, The occurrence of large acetylcholinesterase-containing neurons in human neostriatum as disclosed in normal and Alzheimer’s disease brains, Brain Res. 291:154–158.PubMedCrossRefGoogle Scholar
  78. Parker, W.J.R., Boyson, S.J., Luder, A.S., and Parks, J.K., 1990, Evidence for a defect in NADH:ubiquinone oxidoreductase (complex I) in Huntington’s disease, Neurology 40:1231–1234.PubMedGoogle Scholar
  79. Ramsay, R.R., Krueger, M.J., Youngster, S.K., Singer, T.P.,1991, Interaction of l-methyl-4-phenylpyridium ion (MPP=) and its analogs with the rotenone/piericidin hinging site of NADH dehydrogenase, J. Neurochem. 56:1184–1190.PubMedCrossRefGoogle Scholar
  80. Reiner, A., Albin, R.L., Anderson, K.D., D’Amato, C.J., Penney, J.B., and Young, A.B., 1988, Differential loss of striatal projection neurons in Huntington’s disease, Proc. Natl. Acad. Sci. USA 85:5733–5737.PubMedCrossRefGoogle Scholar
  81. Ribak, C.E., Vaughn, J.E., and Roberts, E., 1979, The GABA neurons and their axon terminals in the rat corpus striatum as demonstrated by GAD immunocytochemistry, J. Comp. Neurol. 187:261–284.PubMedCrossRefGoogle Scholar
  82. Richardson, E.P. Jr., 1990, Third Dorothy S. Russell memorial lecture. Huntington’s disease:some recent neuropathological studies, Neuropathol. Appl. Neurobiol. 16:451–460.PubMedCrossRefGoogle Scholar
  83. Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto, J., O’Regan, J.P., Deng, H.-X., Rahmani, Z., Krizus, A., McKenna-Yasek, D., Cayabyab, A., Gaston, S.M., Berger, R., Tanzi, R.E., Halperin, J.J., Herzfeit, B., Van den Bergh, R., Hung, W.-Y., Bird, T., Deng, G., Mulder, D.W., Smyth, C, Laing, N.G., Soriana, E., Pericak-Vance, M.A., Haines, J., Rouleau, G.A., Gusella, J.A., Horvitz, H.R., and Brown, R.H., 1993, Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis, Nature 362:59–62.PubMedCrossRefGoogle Scholar
  84. Saji, M., and Reis, DJ., 1987, Delayed transneuronal death of substantia nigra neurons prevented by gamma-aminobutyric acid agonist, Science 235:66–69.PubMedCrossRefGoogle Scholar
  85. Seto-Ohshima, A., Emson, P.C., Lawson, E., Mountjoy, C.Q., and Carrasco, L.H., 1988, Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease, Lancet 1252–1255.Google Scholar
  86. Singer, T.P., and Ramsay, R.R., 1990, Mechanism of the neurotoxicity of MPTP. An update, Febs. Lett. 274:1–8.PubMedCrossRefGoogle Scholar
  87. Stadler, J., Curran, R.D., Ochoa, J.B., Harbrecht, B.G., Hoffman, R.A., Simmons, R.L., Billiar, T.S.,1991, Effect of endogenous nitric oxide on mitochondrial respiration of rat hepatocytes in vitro and in vivo, Arch. Surg. 126:186–191.PubMedGoogle Scholar
  88. Stamler, J.S., Singel, DJ., and Loscalzo, J., 1992, Biochemistry of nitric oxide and its redox-activated forms, Science 258:1898–1902.PubMedCrossRefGoogle Scholar
  89. Storey, E., Hyman, B.T., Jenkins, B., Brouillet, E., Miller, J.M., Rosen, B.R., and Beal, M.F., 1992, MPP+ produces excitotoxic lesions in rat striatum due to impairment of oxidative metabolism, J. Neurochem. 58:1975–1978.PubMedCrossRefGoogle Scholar
  90. Takagi, H., Mizuta, H., Matsuda, T., Inagaki, S., Tateishi, K., and Hamaoka, T., 1984, The occurrance of cholecystokinin-like immunoreactive neurons in the rat neostriatum:light and electron microscopic analysis, Brain Res. 309:346–349.PubMedCrossRefGoogle Scholar
  91. Tellez-Nagel, I., Johnson, A.B. and Terry, R.D., 1973, Ultrastructural and histochemical study of cerebral biopsies in Huntington’s Chorea, Adv. Neurol. 1:387–398.Google Scholar
  92. Theriault, E., and Landis, D.M.D. 1987, Morphology of neurons containing VIP-like immunoreactivitry, J. Comp. Neurol. 256:1–13.PubMedCrossRefGoogle Scholar
  93. Trounce, L, Byrne, E., Marzuki, S., 1989, Decline in skeletal muscle mitochondrial respiratory chain function: possible factor in ageing, Lancet i:637–639.CrossRefGoogle Scholar
  94. Vonsattel, J.-P., Meyers, R.H., Stevens, T.J., Ferrante, R.J., Bird, E.D., and Richardson, J. Edward P., 1985, Neuropathological classification of Huntington’s disease. J. Neuropathol. Exp. Neurol. 44:559–577.PubMedCrossRefGoogle Scholar
  95. Wallace, D.C., 1991, Mitochondrial genes and neuromuscular disease, Res. Publ. Assoc. Res. Nerv. Ment. Dis. 69:101–120.PubMedGoogle Scholar
  96. Zeevalk, G.D., Nicklas, WJ,1991, Mechanisms underlying initiation of excitotoxicity associated with metabolic inhibition, J. Pharm. Exp. Ther. 257:870–878.Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Robert J. Ferrante
    • 1
    • 2
  • M. Flint Beal
    • 3
    • 4
  • Neil W. Kowall
    • 1
    • 2
  1. 1.Geriatric Research Education Clinical CenterBedford VA Medical CenterBedfordUSA
  2. 2.Departments of Neurology and PathologyBoston University School of MedicineUSA
  3. 3.Neurology ServiceMassachusetts General HospitalUSA
  4. 4.Harvard Medical SchoolBostonUSA

Personalised recommendations