The Basal Ganglia Related System of Primates: Definition, Description and Informational Analysis

  • Gérard Percheron
  • Chantal François
  • Jérôme Yelnik
  • Gilles Fénelon
  • Boualam Talbi
Part of the Advances in Behavioral Biology book series (ABBI, volume 41)

Abstract

In the first IBAGS book we tried to define the basal ganglia and to determine their components using rational criteria. Eight years later, an answer, acceptable by most specialists, may be given. It now appears advisable to place the set of the basal ganglia in a more general system also including their inputs and outputs. Despite numerous attempts at finding direct descending connections to motoneurons, the motor action of the basal ganglia, as classically stressed, is exerted through the pyramidal system. The “basal ganglia related system” might then be seen as a cortico-baso-thalamo-cortical circuit comprising:(1) the cortico-striatal connection, (2) the striato-pallidonigral connection of the “basal ganglia core” made up of the striatum and its targets, the two pallidal nuclei and the substantia nigra (pars reticulata and lateralis), (3) the regulation of the core by the pars compacta of the substantia nigra, the subthalamic nucleus, the central complex (centre médian-parafasciculaire) and the pedunculo-pontine complex, (4) the output of the core:the pallido-thalamic and nigro-thalamic connections, (5) the pallidal thalamocortical and the nigral thalamo-cortical connections, (6) cortico-cortical connections, and (7) the source of the cortico-spinal connection (see Fig. 1 and Table I). Our analysis, almost exclusively based on data obtained in primates, will follow these steps successively.

Keywords

Tyrosine Neurol Choline Acetyl MPTP 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aizawa, H, Kwak, S., Shimizu, T., and Mannen, T., 1991, Determination of GABAergic pallidothalamic termination in human brain, J. Neurol. Sci. 105:124–125.PubMedCrossRefGoogle Scholar
  2. Akert, K., and Hartmann-von Monakow, K., 1980, Relationships of precentral, premotor and prefrontal cortex to the mediodorsal and intralaminar nuclei of the monkey thalamus, Acta Neurobiol. Exp. 40:7–25.Google Scholar
  3. Alexander, G.E., Koliatsos, V.E., Martin, L.J., Hedreen, J., Hamada, I., and DeLong, M.R., 1988, Organisation of primate basal ganglia “motor circuit”. 1. Motor cortex (MC) and supplementary motor area (SMA) project to complementary regions within matrix compartment of putamen, Soc. Neurosci. Abstr. 14:720.Google Scholar
  4. Anderson, M.E., and Turner, R.S., 1991, Activity of neurons in cerebellar-receiving and pallidal-receiving areas of the thalamus of the behaving monkey, J. Neurophysiol. 66:879–893.PubMedGoogle Scholar
  5. Arikuni, T., Sakai, M., Hamda, I., and Kubota, I., 1987, Topographical projections from the prefrontal cortex to the post-arcuate area in the rhesus monkey, studied by retrograde axonal transport of horseradish peroxidase, Neurosci. Let,. 19:155–160.CrossRefGoogle Scholar
  6. Bauswein, E., Fromm, C, and Preuss, A., 1989, Corticostriatal cells in comparison with pyramidal tract neurons:contrasting properties in the behaving monkey, Brain Res. . 493:198–203.PubMedCrossRefGoogle Scholar
  7. Becksteadt, R.M., and Frankfurter, A., 1982, The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey, Neuroscience. 7:2377–2388.CrossRefGoogle Scholar
  8. Cano, J., Pasik, P., and Pasik, T., 1989, Early postnatal development of the monkey globus pallidus:A Golgi and electron microscopic study, J. Comp. Neurol. 279:353–367.PubMedCrossRefGoogle Scholar
  9. Carpenter, M.B., and Jayaraman, J., 1990, Subthalamic nucleus of the monkey:connections and immunocytochemical features of afferents, J. Hirnforsch. . 31:653–668.PubMedGoogle Scholar
  10. Crutcher, M.D., DeLong, M.R.,1984, Single cell studies of the primate putamen. I; Functional organisation, Exp. Brain Res.53:233–244PubMedCrossRefGoogle Scholar
  11. DeLong, M.R., 1971, Activity of pallidal neurons during movement, J. Neurophysiol. 34:414–427.PubMedGoogle Scholar
  12. DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1983, Relation between movement and single cell discharge in the substantia nigra of the behaving monkey, J. Neurosci. . 3:1599–1606.PubMedGoogle Scholar
  13. DeLong, M.R., Crutcher, M.D., and Georgopoulos, A.P., 1985, Primate globus pallidus and subthalamic nucleus:functional organization, J. Neurophysiol. 53:530–543.PubMedGoogle Scholar
  14. Di Chiara, G., Porceddu, M.L., Morelli, M., Mulas, M.L., and Gessa, G.L., 1979, Evidence for a GABAergic projection from the substantia nigra to the ventromedial thalamus and to the superior colliculus in the rat, Brain Res. . 176:273–284.PubMedCrossRefGoogle Scholar
  15. DiFiglia, M., Pasik, P., and Pasik, T., 1982, A Golgi and ultrastructural study of the monkey globus pallidus,J. Comp. Neurol. 212:53–75.PubMedCrossRefGoogle Scholar
  16. Féger, J., and Crossman, A.R., 1984, Identification of different subpopulations of neostriatal neurons projecting to globus pallidus and substantia nigra in the monkey:a retrograde fluorescence double-labelling study, Neurosci. Lett. 49:7–12.PubMedCrossRefGoogle Scholar
  17. Féger, J., Vezole, I., Rentwart, N., Robledo, P.,1989, The rat subthalamic nucleus:electrophysiological and behavioral data,in. : “Neural Mechanisms in Disorders of movements,” A.R.Crossman, M.A. Sambrook, eds., J. Libbey, London, pp. 37–43.Google Scholar
  18. Fénelon, G., François, C, Percheron, G., and Yelnik, J., 1990, Topographic distribution of pallidal neurons projecting to the thalamus in macaques, Brain Res. 520:27–35.PubMedCrossRefGoogle Scholar
  19. Fénelon, G., François, C., Percheron, G., and Yelnik, J., 1991, Topographic distribution of the neurons of the central complex (centre médian-parafascicular complex) and of other thalamic neurons projecting to the striatum in macaque, Neuroscience. 45:495–510.PubMedCrossRefGoogle Scholar
  20. Filion, M., Tremblay, L., and Bédard, P.J., 1988, Abnormal influences of passive limb movement on the activity of globus pallidus:neurons in parkinsonian monkeys, Brain Res. 444:165–176.PubMedCrossRefGoogle Scholar
  21. Flaherty, A.W., and Graybiel, A.M., 1991, Corticostriatal transformations in the primate somatosensory system. Projections from physiologically mapped body-part representations, J. Neurosci. . 66:1249–1263.Google Scholar
  22. Fotuhi, M., Koliatsos, V.E., Alexander, G.E., and DeLong, M.R., 1989, Patterns of sensorimotor integration in the primate neostriatum:primary somatosensory cortex (SC) and motor cortex (MC) project to coextensive territories in the putamen, Soc. Neurosci. Abstr. 15:285.Google Scholar
  23. Fox, C.A., Hillman, D.E., Siegesmund, K.A., Sether, L.A., 1966, The primate globus pallidus and its feline and avian homologues:a Golgi and electronmicroscopic study,in. : “Evolution of the forebrain,” R. Hassler, H.Stephan, eds., G. Thieme, Stuttgart, pp. 237–248.Google Scholar
  24. Fox, C.A., and Rafols, J.A., 1975, The radial fibers in the globus pallidus, J. Comp. Neurol. 159:177–200.PubMedCrossRefGoogle Scholar
  25. François, C, Percheron, G., Parent, A., Sadikot, A.F., Fénelon, G., and Yelnik, J., 1991, Topography of the projection from the central complex of the thalamus to the sensorimotor striatal territory in monkeys, J. Comp. Neurol. 305:17–34.PubMedCrossRefGoogle Scholar
  26. François, C, Percheron, G., and Yelnik, J., 1984a, A Golgi analysis of the primate globus pallidus. I.Inconstant processes of large neurons. Other neuronal types. Afferent axons., J. Comp. Neurol. 227:182–199.PubMedCrossRefGoogle Scholar
  27. François, C, Percheron, G., and Yelnik, J., 1984b, Localization of nigrostriatal, nigrothalamic and nigrotectal neurons in ventricular coordinates in macaques, Neurosci. 13:61–76.CrossRefGoogle Scholar
  28. François, C, Percheron, G., and Yelnik, J., 1992a, Associative and sensorimotor parts of the pallidum and substantia nigra in macaques, IBAGS IV, Giens, abstr., p. 30.Google Scholar
  29. François, C, Percheron, G., and Yelnik, J., 1992b, Intrastriatal localization of neurons which project to the two pallidal nuclei and to the substantia nigra in macaques, IBAGS IV, Giens, abstr., p. 30.Google Scholar
  30. François, C., Percheron, G., Yelnik, J., and Tandé, D., 1988, A topographic study of the course of nigral axons and the distribution of pallidal axonal endings in the centre médian-parafascicular complex of macaques, Brain Res. 473:181–186.PubMedCrossRefGoogle Scholar
  31. François, C, Yelnik, J., Percheron, G., 1987, Golgi study of the primate substantia nigra. II. Spatial organization of dendritic arborizations in relation to the cyto-architectonic boundaries and to the striatonigral bundle, J. Comp. Neurol. 265:473–493.PubMedCrossRefGoogle Scholar
  32. Gimenez-Amaya, J.M., 1991, The association cortex and the basal ganglia:a neuroanatomical view upon their relationship based on hodological studies, J. Hirnforsch. 4:501–510.Google Scholar
  33. Gimenez-Amaya, J.M., and A.M. Graybiel, 1990, Compartmental origins of the striatopallidal projection in the primate, Neuroscience,. 34:11–126.Google Scholar
  34. Gosh, S., Brinkman, C, and Porter, R., 1987, A quantitative study of the distribution of neurons projecting to the precentrai motor cortex in the monkey (M.fascicularis), J. Comp. Neurol. . 259:424–444.CrossRefGoogle Scholar
  35. Graybiel, A.M., Flaherty, A.W., and Gimenez-Amaya, J.M., 1991, Striosomes and matrisomes, in. :“The Basal Ganglia III,” G. Bernardi, M.B. Carpenter, G. Di Chiara, M. Morelli and P. Stanzione, eds., Plenum Press, New York, pp. 3–12.Google Scholar
  36. Hamada, I., DeLong, M.R., and Mano, N-I., 1990, Activity of identified wrist-related pallidal neurons during step and ramp movements in the monkey, J. Neurophysiol. 64:1892–1906.PubMedGoogle Scholar
  37. Hartmann-von Monakow, K., Akert, K., and Künzle, H., 1979, Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis, Exp. Brain Res. 34:91–105.Google Scholar
  38. Hazrati, L.-N., Parent, A., Mitchell, S., and Faber, S.N., 1990, Evidence for interconnections between the two segments of the globus pallidus in primates:a PHA-L anterograde tracing study, Brain Res. 533:171–175.PubMedCrossRefGoogle Scholar
  39. Hazrati, L.-N., and Parent, A., 1992a, Convergence of subthalamic and striatal efferents at pallidal level in primates:an anterograde double-labeling study with biocytin and PHA-L, Brain Res. 569:336–340.PubMedCrossRefGoogle Scholar
  40. Hazrati, L.-N., and Parent, A., 1992b, The striatopallidal projection displays a high degree of anatomical specificity in the primate, Brain Res. 592:213–227.PubMedCrossRefGoogle Scholar
  41. Hedreen, J.C., and DeLong, M.R., 1991, Organization of striatopallidal, striatonigral, and nigrostriatal projections in the macaque, J. Comp. Neurol. 304:569–595.PubMedCrossRefGoogle Scholar
  42. Hirai, T., and Jones, E.G., 1989, A new panellation of the human thalamus on the basis of histochemical staining, Brain Res. Rev. 14:1–34.PubMedCrossRefGoogle Scholar
  43. Hikosaka, O., Wurtz, R.H., 1981, The role of the substantia nigra in the initiation of saccadic eye movements, in:“Progress in oculomotor research,” A.Fuchs, W. Becker, eds., Elsevier, Amsterdam, pp. 145–152.Google Scholar
  44. Ilinsky, I.A., Jouandet, M.L., Goldman-Rakic, P.S., 1985, Organization of the nigrothalamocortical system in the Rhesus monkey, J. Comp. Neurol. 263:315–330.CrossRefGoogle Scholar
  45. Jinnai, K., Nambu, A., and Yoshida, S.-I., 1989, Activity of thalamic neurons conveying the basal ganglia output to the motor cortex, in. : “Neural programming,” M. Ito, ed., Karger, Basel, pp. 111–121.Google Scholar
  46. Kitai, S., Kita, H., 1987, Anatomy and physiology of the subthalamic nucleus:a driving force of the basal ganglia, in:“The Basal Ganglia II,” M.B. Carpenter, A.Jayaraman, eds., Plenum Press, New York, pp. 357–373.Google Scholar
  47. Lavoie, B., and Parent, A., 1990, Immunochemical study of the serotoninergic innervation of the basal ganglia in the squirrel monkey, J. Comp. Neurol. 299:1–16.PubMedCrossRefGoogle Scholar
  48. Lavoie, B., Smith, Y., and Parent, A., 1989, Dopaminergic innervation of the basal ganglia in the squirrel monkey as revealed by tyrosine hydroxylase immunochemistry, J. Comp. Neurol. 289:36–52.PubMedCrossRefGoogle Scholar
  49. Leichnetz, G.R., 1986, Afferent and efferent connections of the dorsolateral precentrai gyrus (area 4, hand/arm region) in the macaque monkey, with comparisons to area 8, J. Comp. Neurol. 254:460–492.PubMedCrossRefGoogle Scholar
  50. Lemon, R, 1988, The output map of the primate motor cortex, Trends Neurosci. 11:501–506.PubMedCrossRefGoogle Scholar
  51. Liles, S.L., and Updyke, B.V., 1985, Projection from the digit and wrist area of precentrai gyrus to the putamen:relation between topography and physiological properties of neurons in the putamen, Brain Res. 339:245–255PubMedCrossRefGoogle Scholar
  52. Martino, A.M., and Strick, P.L., 1987, Corticospinal projections originate from the arcuate premotor area, Brain Res. 404:307–312.PubMedCrossRefGoogle Scholar
  53. Mesulam, M.M., Mufson, E.J., Levey, A.I., and Wainer, B.H., 1984, Atlas of cholinergic neurons in the forebrain and upper brain stem of the macaque based on monoclonal choline acetyl transferase immunochemistry, Neuroscience. 12:669–686.PubMedCrossRefGoogle Scholar
  54. Mink, J.W., and Thach, W.T., 1991, Basal ganglia motor control. II. Late timing relative to movement onset and inconsistent pallidal coding of movement parameters, J. Neurophysiol. 65:301–328.PubMedGoogle Scholar
  55. Moon Edley, S., and Graybiel, A.M., 1983, The afferent and efferent connections of the nucleus tegmenti pedunculopontinus, pars compacta, J. Comp. Neurol. 217:187–215.CrossRefGoogle Scholar
  56. Nakano, K., Tokushige, A., Khono, M., Hasegawa, Y., Kayahara, T., and Sasaki, K., 1990, An autoradiographic study of cortical projections from motor thalamic nuclei in the macaque monkey, Neurosci. Res. 13:119–137.CrossRefGoogle Scholar
  57. Nambu, A., Yoshida, S.-I, and Jinnai, K., 1990, Discharge patterns of pallidal neurons with input from various cortical areas during movement in the monkey, Brain Res. 519:183–191.PubMedCrossRefGoogle Scholar
  58. Nauta, H.J.W., and Cole, C, 1978, Efferent projections of the subthalamic nucleus:an autoradiographic study in monkey and cat, J. Comp. Neurol. 188:1–16.CrossRefGoogle Scholar
  59. Nauta, W.J.H., and Mehler, W.R., 1966, Projections from the lentiform nucleus in the monkey, Brain Res. 1:3–42.PubMedCrossRefGoogle Scholar
  60. Nelson, M.E, and Bower, J.M., 1990, Brain maps and parallel computers, Trends Neurosci. 13:403–408.PubMedCrossRefGoogle Scholar
  61. Olivier, A., Parent, A., and Poirier, L.J., 1970, Identification of the thalamic nuclei on the basis of their cholinesterase content in monkey, J. Anat. 106:37–50.PubMedGoogle Scholar
  62. Olszewski, J.,1952, “The Thalamus of the Macaca mulatta. An Atlas for Use with the stereotaxic Instrument,” Basel, Karger.Google Scholar
  63. Parent, A., Bouchard, C, and Smith, Y., 1984, The striatopallidal and striatonigral projections:two distinct fiber systems in primate, Brain Res. 303:385–390.PubMedCrossRefGoogle Scholar
  64. Parent, A., and de Bellefeuille, L., 1983, The pallidointralaminar and pallidonigral projections in primate as studied by retrograde double-labeling method, Brain Res. 278:11–27.PubMedCrossRefGoogle Scholar
  65. Parent, A., Hazrati, L.-N., Smith, Y., 1989a, The subthalamic nucleus in primates. A neuroanatomical and immunohistochemical study, in:“Neural Mechanisms in Disorders of movements,” A.R.Crossman, M.A.Sambrook, eds., J. Libbey, London, pp. 29–35.Google Scholar
  66. Parent, A., Smith, Y., Filion, M., and Dumas, J., 1989b, Distinct afferents to internal and external pallidal segments in the squirrel monkey, Neurosci. Lett. 96:140–144.PubMedCrossRefGoogle Scholar
  67. Parthasarathy, H.B., Schall, J.D., and Graybiel, A.M., 1992, Distributed but convergent ordering of corticostriatal projections:Analysis of the frontal eye field and the supplementary eye field in the macaque monkey, J. Neurosci. 12:4468–4488.PubMedGoogle Scholar
  68. Penney, J.B., and Young, A.B., 1981, GABA as the pallidothalamic neurotransmitter:implications for basal ganglia function, Brain Res. 207:195–199.PubMedCrossRefGoogle Scholar
  69. Percheron, G., 1982, Principles and methods of the graph-theoretical analysis of natural binary arborescences, J. Theor. Biol. 99:509–552CrossRefGoogle Scholar
  70. Percheron, G., and Filion, M., 1991, Parallel processing in the basal ganglia:up to a point, Trends Neurosci. 14:55–56.PubMedCrossRefGoogle Scholar
  71. Percheron, G., François, C, Parent, A., Sadikot, A.F., Fénelon, G., and Yelnik, J., 1991a, The primate central complex as one of the basal ganglia,in. : “The Basal Ganglia III,” G. Bernardi, M.B. Carpenter, G. Di Chiara, M. Morelli and P. Stanzione, eds., Plenum Press, New York, pp. 177–186.Google Scholar
  72. Percheron, G., François, C, Talbi, B., Meder, J.-R, Fénelon, G., and Yelnik, J., 1993a, The primate motor thalamus analyzed with reference to subcortical afferent territories, Stereotact. Fund. Neurosurg. 93:32–41.CrossRefGoogle Scholar
  73. Percheron, G., François, C,Yelnik, J., 1987, Spatial organization and information processing in the core of the basal ganglia, in. : “The Basal Ganglia II,” M.B. Carpenter,A.Jayaraman, eds., Plenum Press, New York, pp. 205–226.Google Scholar
  74. Percheron, G., François, C, Yelnik, J., Fénelon, G., 1989, The primate nigro-striato-pallido-nigral system. Not a mere loop,in. : “Neural Mechanisms in Disorders of movements,” A.R. Crossman, M.A.Sambrook, eds., J. Libbey, London, pp. 103–109.Google Scholar
  75. Percheron, G., François, C, Yelnik, J., Talbi, B., Meder, J.-F., Fénelon, G., 1993b, The pallidal and nigral thalamic territories and the problem of the anterior part of the lateral region in primates, in. : “Thalamic networks for relay and modulation,” D. Minciacchi, M. Molinari, G. Macchi, E.G. Jones, eds., Pergamon Press, New York, in press.Google Scholar
  76. Percheron, G., Yelnik, J., and François, C., 1984a, A Golgi analysis of the primate globus pallidus. III.Spatial organization of the striato-pallidal complex, J. Comp. Neurol. 227:214–227.PubMedCrossRefGoogle Scholar
  77. Percheron, G., Yelnik, J., and François, C., 1984b, The primate striato-pallido-nigral system. An integrative system for cortical information, in. : “Basal ganglia:structure and function,” J.S. McKenzie, R.E. Kemm and L.N. Wilcock, eds., Plenum Press, New York, pp. 87–105.Google Scholar
  78. Percheron, G., Yelnik, J., François, C., Fénelon, G., Talbi, B., 1991b, The spatial organisation of information processing in the striato-pallido-nigral system, in. :“Basal ganglia and movement disorders”, A. Bigami, ed., New Issues in Neurosci. . Vol III, N°2:211–234.Google Scholar
  79. Robledo, P., and Féger, J., 1990, Excitatory influence of rat subthalamic nucleus to substantia nigra parsreticulata and the pallidal complex:electrophysiological data, Brain Res. 518:47–54.PubMedCrossRefGoogle Scholar
  80. Russchen, F.T., Bakst, I., Amaral, D.G., and Price, J.L., 1985, The amygdalostriatal projectios in the monkey. An anterograde tracing study, Brain Res. 329:241–257.PubMedCrossRefGoogle Scholar
  81. Schaltenbrand, G., Spuler, H., Wahren, W., and Rümler, B., 1971, Electroanatomy of the thalamic ventrooral nucleus based on stereotaxic stimulation in man, Z. Neurol. 199:259–276.PubMedCrossRefGoogle Scholar
  82. Schell, E.R., and Strick, P.L., 1984, The origin of thalamic inputs to the arcuate premotor and supplementary motor areas, J. Neurosci. 4:539–560.PubMedGoogle Scholar
  83. Schultz, W., 1986, Activity of pars reticulata neurons of monkey substantia nigra in relation to motor, sensory, and complex events, J. Neurophysiol. 55:660–677.PubMedGoogle Scholar
  84. Selemon, L.D., and Goldman-Rakic, P.S., 1985, Longitudinal topography and interdigitation ofcorticostriatal projections in the rhesus monkey, J. Neurosci. 5:776–794.PubMedGoogle Scholar
  85. Shook, B.L., Schlag-Rey, M., and Schlag, J., 1991, Primate supplementary eye field. II. Comparative aspects of connections with the thalamus, corpus striatum, and related nuclei, J. Comp. Neurol. 307:562–583.PubMedCrossRefGoogle Scholar
  86. Smith, Y., Hazrati, L.-N., and Parent, A., 1990, Efferent projections of the subthalamic nucleus in the squirrel monkey as studied by the PHA-L anterograde tracing method, J. Comp. Neurol. 294:303–323.CrossRefGoogle Scholar
  87. Smith, Y., Lavoie, B., Dumas, J., and Parent, A., 1989, Evidence for a distinct nigropallidal dopaminergic projection in the squirrel monkey, Brain Res. 482:381–386.PubMedCrossRefGoogle Scholar
  88. Smith, Y., and Parent, A., 1986, Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus), Neuroscience. 18:347–371.PubMedCrossRefGoogle Scholar
  89. Smolensky, P., 1987, Information processing in dynamical systems: Foundation of Harmony theory, in: “Parallel distributed processing,” D.E. Rumelhart, J.L. McClelland, the PDP Research group, eds., MIT Press, Cambridge, Vol 1, Chap 6:194–281.Google Scholar
  90. Toyoshima, K., and Sakai, H., 1982, Exact origin of the cortico-spinal tract and the quantitative contributions to the CST in different cytoarchitectonic areas. A study with horseradish peroxidase in the monkey, J. Hirnforsh. 23:257–261.Google Scholar
  91. Tremblay, L., and Filion, M., 1989, Responses of pallidal neurons to striatal stimulation in intact waking monkeys, Brain Res. 498:1–16.PubMedCrossRefGoogle Scholar
  92. Van Hoesen, G.W., Yeterian, E.H., and Lavizzo-Mourey, R., 1981, Widespread corticostriate projections from temporal cortex of the Rhesus monkey, J. Comp. Neurol. 199:205–219.PubMedCrossRefGoogle Scholar
  93. Von Monakow, K.H., Akert, K., and Künzle, H., 1978, Projections from the precentrai motor cortex and other areas of the frontal lobe to the subthalamic nucleus in the monkey, Exp. Brain Res. 33:395–403.PubMedCrossRefGoogle Scholar
  94. Yelnik, J., François, C, Percheron, G., and Heyner, S., 1987, Golgi study of the primate substantia nigra. I.Quantitative morphology and typology of nigral neurons, J. Comp. Neurol. 265:455–472.PubMedCrossRefGoogle Scholar
  95. Yelnik, J., François, C, Percheron, G., and Tandé, D., 1991, Morphological taxonomy of the neurons of the primate striatum, J. Comp. Neurol. 313:273–294.PubMedCrossRefGoogle Scholar
  96. Yelnik, J., and Percheron, G., 1979, Subthalamic neurons in primates:a quantitative and comparative analysis, Neuroscience. 4:1717–1743.PubMedCrossRefGoogle Scholar
  97. Yelnik, J., Percheron, G., and François, C, 1984, A Golgi analysis of the primate globus pallidus. II. Quantitative morphology and spatial orientation of dendritic arborizations, J. Comp. Neurol. 227:200–213.PubMedCrossRefGoogle Scholar
  98. Yelnik, J., François, C, Percheron, G., 1993, Three-dimensional morphology of striatal neurons in relation to compartmental organization of the striatum, in. : “The Basal Ganglia IV. New ideas and data on structure and function,” G. Percheron, J.S. McKenzie, J.Féger, eds., Plenum Press, New York, This volume.Google Scholar
  99. Yoshida, S.-I., Nambu, A., Jinnai, K., 1993, The distribution of the globus pallidus neurons with inputs from various cortical areas in the monkeys, submitted, personal communication.Google Scholar

Copyright information

© Plenum Press, New York 1994

Authors and Affiliations

  • Gérard Percheron
    • 1
  • Chantal François
    • 1
  • Jérôme Yelnik
    • 1
  • Gilles Fénelon
    • 1
  • Boualam Talbi
    • 1
  1. 1.Laboratoire de neuromorphologie informationnelle et de neurologie expérimentale du mouvementU106 INSERM, Pavillon Inserm, Hôpital de la SalpêtrièreParis Cedex 13France

Personalised recommendations