Advertisement

Quantum-Well Semiconductor Lasers

  • Govind P. Agrawal
  • Niloy K. Dutta

Abstract

A double-heterostructure laser consists of an active layer sandwiched between two higher-gap cladding layers. The active-layer thickness is typically in the range of 0.1–0.3 µm. In the last few years, double-heterostructure lasers with an active-layer thickness of ~ 10 nm have been fabricated. The carrier (electron or hole) motion normal to the active layer in these structures is restricted. As a result, the kinetic energy of the carriers moving in that direction is quantized into discrete energy levels similar to the well-known quantum-mechanical problem of the one-dimensional potential well, and hence these lasers are called quantum-well lasers.

Keywords

Active Layer Semiconductor Laser Auger Recombination Threshold Current Density Confinement Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1a.
    Dingle, R., W. Wiegmann, and C. H. Henry. Phys. Rev. Lett. 33 827 (1974)CrossRefGoogle Scholar
  2. 1b.
    R. Dingle, and C. H. Henry, U.S. Patent 3,982,207 (Sept. 21, 1976).Google Scholar
  3. 2.
    Holonyak, N., Jr., R. M. Kolbas, R. D. Dupuis, and P. D. Dapkus. IEEE J. Quantum Electron. QE-16 170 (1980).CrossRefGoogle Scholar
  4. 3.
    Yariv, A. IEEE Circuits & Dev. Mag. 5(6) 25 (1989).CrossRefGoogle Scholar
  5. 4.
    Special issue on semiconductor lasers. IEEE J. Quantum Electron. QE-27 1317 (1991).Google Scholar
  6. 5.
    Zory, P. S., Editor. Quantum Well Lasers. San Diego, California: Academic Press, 1992.Google Scholar
  7. 6.
    Cole, M. W. Rev. Mod. Phys. 46 451 (1974).CrossRefGoogle Scholar
  8. 7.
    Dorda, G.. 215 in Festkörperprobleme [Advances in Solid State Physics], vol. XIII. Braunschweig: Pergamon/Vieweg, 1973.Google Scholar
  9. 8.
    Dingle, R. p. 21 in Festkörperprobleme [Advances in Solid State Physics], vol. XV. Braunschweig: Pergamon/Vieweg, 1975.CrossRefGoogle Scholar
  10. 9a.
    Okumura, H., S. Misawa, S. Yoshida, and S. Gonda. Appl. Phys. Lett. 46 377 (1985).CrossRefGoogle Scholar
  11. 9b.
    Forrest, S. R., P. H. Schmidt, R. B. Wilson, and M. L. Kaplan. Appl. Phys. Lett. 45 1199 (1984)CrossRefGoogle Scholar
  12. 9b.
    Forrest, S. R., P. H. Schmidt, R. B. Wilson, and M. L. Kaplan J. Vac. Sci. Technol. B 4 37 (1986).CrossRefGoogle Scholar
  13. 10.
    Shank, C. V., R. L. Ford, R. F. Leheny, and J. Shah. Phys. Rev. Lett. 42 112 (1979).CrossRefGoogle Scholar
  14. 11.
    Temkin, H., M. B. Panish, P. M. Petroff, R. A. Hamm, J. M. Vandenberg, and S. Sumski. Appl. Phys. Lett. 47 394 (1985).CrossRefGoogle Scholar
  15. 12.
    Hess, K., B. A. Vojak, N. Holonyak, , R. Chin, and P. D. Dapkus. Solid-State Electron. 23 585 (1980).CrossRefGoogle Scholar
  16. 13.
    Dutta, N. K. J. Appl. Phys. 53 7211 (1982).CrossRefGoogle Scholar
  17. 14.
    Sugimura, A. IEEE J. Quantum Electron. QE-20 336 (1984).CrossRefGoogle Scholar
  18. 15.
    Asada, M., A. Kameyama, and Y. Suematsu. IEEE J. Quantum Electron. QE-20 745 (1984).CrossRefGoogle Scholar
  19. 16.
    Tsang, W. T., and J. A. Ditzenberger. Appl. Phys. Lett. 39 193 (1981).CrossRefGoogle Scholar
  20. 17.
    Sugimura, A. Appl. Phys. Lett. 43 728 (1983).CrossRefGoogle Scholar
  21. 18.
    Chiu, L. C., and A. Yariv. IEEE J. Quantum Electron. QE-18 1406 (1982).CrossRefGoogle Scholar
  22. 19.
    Dutta, N. K. J. Appl Phys. 54 1236 (1983).CrossRefGoogle Scholar
  23. 20.
    Sugimura, A. IEEE J. Quantum Electron. QE-19 932 (1983).CrossRefGoogle Scholar
  24. 21.
    Smith, C., R. A. Abram, and M. G. Burt. J. Phys. C 16 L171 (1983).CrossRefGoogle Scholar
  25. 22.
    Tsang, W. T. Appl. Phys. Lett. 39 135 (1981).Google Scholar
  26. 23.
    Dumke, W. P. IEEE J. Quantum Electron. QE-11 400 (1975).CrossRefGoogle Scholar
  27. 24.
    Streifer, W., D. R. Scifres, and R. D. Burnham. Appl. Opt. 18 3547 (1979).CrossRefGoogle Scholar
  28. 25.
    Tsang, W. T. IEEE J. Quantum Electron. QE-20 1119 (1984); see references cited therein.Google Scholar
  29. 26.
    Tsang, W. T. Appl. Phys. Lett. 38 204 (1981).CrossRefGoogle Scholar
  30. 27.
    Woodbridge, K., P. Blood, E. D. Fletcher, and P. J. Hulyer. Appl. Phys. Lett. 45 16 (1984).CrossRefGoogle Scholar
  31. 28.
    Tsang, W. T., R. A. Logan, and J. A. Ditzenberger. Electron. Lett. 18 845 (1982).CrossRefGoogle Scholar
  32. 29.
    Kasemset, D., C. S. Hong, N. B. Patel, and P. D. Dapkus. Appl. Phys. Lett. 41 912 (1982).CrossRefGoogle Scholar
  33. 30.
    Hersee, S. D., M. A. Poisson, M. Baldy, J. P. Duchemin. Electron. Lett. 18 618 (1982).CrossRefGoogle Scholar
  34. 31.
    Dupuis, R. D., R. L. Hartman, and F. R. Nash. IEEE Electron Device Lett. EDL-4 286 (1983).CrossRefGoogle Scholar
  35. 32.
    Fuzii, T., S. Yamakoshi, K. Nanbu, O. Wada, and S. Hiyamizu. J. Vac. Sci. Technical. B 2 259 (1984).Google Scholar
  36. 33.
    Scifres, D. R., R. D. Burnham, C. Lindström, W. Streifer, and T. L. Paoli. Appl. Phys. Lett. 42 645 (1983).CrossRefGoogle Scholar
  37. 34.
    Kobayashi, H., H. Iwamura, T. Saku, and K. Otsuka. Electron. Lett. 19 156 (1983).CrossRefGoogle Scholar
  38. 35.
    Dutta, N. K., R. L. Hartman, and W. T. Tsang. IEEE J. Quantum Electron. QE-19 1243 (1983)CrossRefGoogle Scholar
  39. 35.
    Dutta, N. K., R. L. Hartman, and W. T. Tsang. IEEE J. Quantum Electron. QE-19, 1613 (1983).CrossRefGoogle Scholar
  40. 36.
    Olsson, N. A., N. K. Dutta, W. T. Tsang, and R. A. Logan. Electron. Lett. 20 63 (1984).CrossRefGoogle Scholar
  41. 37.
    Rezek, E. A., N. Holonyak, Jr., B. A. Vojak, G. E. Stillman, J. A. Rossi, D. L. Keune, and J. D. Fairing. Appl. Phys. Lett. 31 288 (1977).CrossRefGoogle Scholar
  42. 38.
    Rezek, E. A., R. Chin, N. Holonyak, Jr., S. W. Kirchofer, and R. M. Kolbas. J. Electron. Mater. 9 1 (1980).CrossRefGoogle Scholar
  43. 39.
    Rezek, E. A., N. Holonyak, Jr., and B. K. Fuller. J. Appl. Phys. 51 2402 (1980).CrossRefGoogle Scholar
  44. 40.
    Dutta, N. K., S. G. Napholtz, R. Yen, R. L. Brown, T. M. Shen, N. A. Olsson, and D. C. Craft. Appl. Phys. Lett. 46 19 (1985).CrossRefGoogle Scholar
  45. 41.
    Dutta, N. K., S. G. Napholtz, R. Yen, T. Wessel, N. A. Olsson. Appl. Phys. Lett. 46 1036 (1985).CrossRefGoogle Scholar
  46. 42.
    Dutta, N. K. IEEE J. Quantum Electron. QE-19 794 (1983).CrossRefGoogle Scholar
  47. 43.
    Yanase, T., Y. Kato, I. Mito, M. Yamoyuchi, K. Nishi, K. Kobayashi, and R. Lang. Electron. Lett. 19 700 (1983).CrossRefGoogle Scholar
  48. 44.
    Temkin, H., K. Alavé, W. R. Wagner, T. P. Pearsall, and A. Y. Cho. Appl. Phys. Lett. 42 845 (1983).CrossRefGoogle Scholar
  49. 45.
    Tsang, W. T. Appl. Phys. Lett. 44 288 (1984).CrossRefGoogle Scholar
  50. 46.
    Dutta, N. K., T. Wessel, N. A. Olsson, R. A. Logan, and R. Yen. Appl. Phys. Lett. 46 525 (1985).CrossRefGoogle Scholar
  51. 47.
    Temkin, H., N. K. Dutta, T. Tanbun-Ek, R. A. Logan, and A. M. Sergent. Appl. Phys. Lett. 57 1610 (1990).CrossRefGoogle Scholar
  52. 48.
    Tsang, W. T., L. Yang, M. C. Wu, Y. K. Chen, and A. M. Sergent. Electron. Lett. 26 2033 (1990).CrossRefGoogle Scholar
  53. 49.
    Derry, P. L., A. Yariv, K. Y. Lau, N. Bar-Chaim, K. Lee, and J. Rosenberg. Appl. Phys. Lett. 50 1773 (1987).CrossRefGoogle Scholar
  54. 50.
    Kapon, E., S. Simhony, J. P. Harbison, L. T. Florez, and P. Worland. Appl. Phys. Lett. 56 1825 (1990).CrossRefGoogle Scholar
  55. 51.
    Burt, M. G. Electron. Lett. 20 27 (1984).CrossRefGoogle Scholar
  56. 52.
    Arakawa, Y., K. Vahala, and A. Yariv. Appl. Phys. Lett. 45 950 (1984).CrossRefGoogle Scholar
  57. 53.
    Arawaka, Y., and A. Yariv. IEEE J. Quantum Electron. QE-21 1666 (1985).CrossRefGoogle Scholar
  58. 54.
    Thijs, P. J. A., L. F. Tiemeijer, P. I. Kuindersma, J. J. M. Binsma, and T. van Dongen. IEEE J. Quantum Electron. QE-27 1426 (1991).CrossRefGoogle Scholar
  59. 55.
    Thijs, P. J. A., and T. van Dongen. Electron. Lett. 25 1735 (1989).CrossRefGoogle Scholar
  60. 56.
    Temkin, H., T. Tanbun-Ek, and R. A. Logan. Appl. Phys. Lett. 56 1210 (1990).CrossRefGoogle Scholar
  61. 57.
    Koren, U., M. Oron, M. G. B. I. Miller, J. L. DeMiguel, G. Raybon, and M. Chien. Electron. Lett. 26 465 (1990).CrossRefGoogle Scholar
  62. 58.
    Laidig, W. D., Y. F. Lin, and P. J. Caldwell. J. Appl. Phys. 57 33 (1985).CrossRefGoogle Scholar
  63. 59.
    Fischer, S. E., D. Fekete, G. B. Feak, and J. M. Ballantyne. Appl. Phys. Lett. 50 714 (1987).CrossRefGoogle Scholar
  64. 60.
    Bour, D. P., D. B. Gilbert, L. Elbaum, and M. G. Harvey. Appl. Phys. Lett. 53 2371 (1988).CrossRefGoogle Scholar
  65. 61.
    Beernik, K. J., P. K. York, and J. J. Coleman. Appl. Phys. Lett. 55 2582 (1989).CrossRefGoogle Scholar
  66. 62.
    Loehr, J. P., and J. Singh. IEEE J. Quantum Electron. QE-27 708 (1991).CrossRefGoogle Scholar
  67. 63.
    Corzine, S. W., R. Yan, and L. A. Coldren. In Quantum Well Lasers, ed. by P. S. Zory. San Diego: Academic Press, 1992.Google Scholar
  68. 64.
    Tsang, W. T., L. Yang, M. C. Wu, Y. K. Chen, and A. M. Sergent. Electron. Lett. 26 2033 (1990).CrossRefGoogle Scholar
  69. 65.
    Temkin, H., T. Tanbun-Ek, R. A. Logan, D. A. Cebula, and A. M. Sergent. IEEE Photon. Technol. Lett. 3 100 (1991).CrossRefGoogle Scholar
  70. 66.
    Adams, A. R. Electron. Lett. 22 249 (1986).CrossRefGoogle Scholar
  71. 67.
    Yablonovitch, E., and E. O. Kane. J. Lightwave Technol. LT-4 504 (1986).CrossRefGoogle Scholar
  72. 68.
    Wu, M. C., Y. K. Chen, M. Hong, J. P. Mannaerts, M. A. Chin, and A. M. Sergent. Appl. Phys. Lett. 59 1046 (1991).CrossRefGoogle Scholar
  73. 69.
    Dutta, N. K., J. Lopata, P. R. Berger, D. L. Sivco, and A. Y. Cho. Electron. Lett. 27 680 (1991).CrossRefGoogle Scholar
  74. 70.
    Kuo, J. M., M. C. Wu, Y. K. Chen, and M. A. Chin. Appl. Phys. Lett. 59 2781 (1991).CrossRefGoogle Scholar
  75. 71.
    Chand, N., E. E. Becker, J. P. van der Ziel, S. N. G. Chu, and N. K. Dutta. Appl. Phys. Lett. 58 1704 (1991).CrossRefGoogle Scholar
  76. 72.
    Choi, H. K., and C. A. Wang. Appl. Phys. Lett. 57 321 (1990).CrossRefGoogle Scholar
  77. 73.
    Dutta, N. K., J. D. Wynn, J. Lopata, D. L. Sivco, and A. Y. Cho. Electron. Lett. 26 1816 (1990).CrossRefGoogle Scholar
  78. 74.
    Okayasu, M., M. Fukuda, M. T. Takeshita, and S. Vehara. IEEE Photon. Technol. Lett. 2 689 (1990).CrossRefGoogle Scholar
  79. 75.
    Dutta, N. K., J. D. Wynn, D. L. Sivco, and A. Y. Cho. Appl. Phys. Lett. 56 2293 (1990).CrossRefGoogle Scholar
  80. 76.
    Kano, F., Y. Yoshikuni, M. Fukuda, and J. Yoshida. IEEE Photon. Technol. Lett. 3 877 (1991).CrossRefGoogle Scholar

Copyright information

© AT&T 1993

Authors and Affiliations

  • Govind P. Agrawal
    • 1
  • Niloy K. Dutta
    • 2
  1. 1.The Institute of OpticsUniversity of RochesterRochesterUSA
  2. 2.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations