Skip to main content
  • 373 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ushakov, I.A., ed. (1994). Handbook of Reliability Engineering, Wiley, New York.

    Google Scholar 

  2. Bartholomew, David J., A.F. Forbes and S.I. Mc-Clean (1991). Statistical Techniques for Manpower Planning, 2nd ed., John Wiley, Chichester.

    Google Scholar 

  3. Bennison, Malcom and J. Casson (1984). The Manpower Planning Handbook. McGraw-Hill, London.

    Google Scholar 

  4. Gass, S.I. (1991). “Military Manpower Planning Models,” Computers and OR, 18 (1), 65–73.

    Google Scholar 

  5. Grinold, R.C. and K.T. Marshall, 1977. Manpower Planning Models. New York and Amsterdam: North-Holland.

    Google Scholar 

  6. Klingman, D. and N. Phillips (1984). “Topological and Computational Aspects of Preemptive Multi-criteria Military Personnel Assignment Problems,” Management Science, 30, 1362–1375.

    Google Scholar 

  7. Smith, A.R. and D.J. Bartholomew (1988). “Manpower Planning in the United Kingdom: An Historical Review,” Jl. Operational Research Society, 9, 235–248.

    Google Scholar 

  8. Vajda, Steven (1978). Mathematics of Manpower Planning, John Wiley, Chichester.

    Google Scholar 

  9. Basu, A., R. Lai, V. Srinivasan and R. Staelin (1985), “Salesforce Compensation Plans: An Agency Theoretic Perspective,” Marketing Science, 4, 267–291.

    Google Scholar 

  10. Bell, D.E., R.L. Keeney and J.D.C. Little (1975), “A Market Share Theorem,” Jl. Marketing Research, 12, 136–141.

    Google Scholar 

  11. Bultez, A. (1988), “Editorial for special issue on marketing and microeconomics,” International Jl Research in Marketing, 5, 221–224.

    Google Scholar 

  12. Eliashberg, J. and G.L. LiHen, eds. (1993), Handbooks In Operations Research and Management Science: Marketing, Elsevier, Amsterdam.

    Google Scholar 

  13. Green, P.E. and A. Krieger (1993), “Voice: An Analytical and Predictive Model for Measuring Customer Satisfaction,” Wharton School working paper, University of Pennsylvania, Philadelphia.

    Google Scholar 

  14. Guadagni P. and J.D.C. Little (1983), “A Logit Model of Brand Choice Calibrated on Scanner Data,” Marketing Science, 2, 203–238.

    Google Scholar 

  15. Kotler, P. (1971), Marketing Decision Making: A Model Building Approach, Holt, Rinehart and Winston, New York.

    Google Scholar 

  16. Lilien, G.L. and P. Kolter (1983), Marketing Decision Making: A Model Building Approach, Harper & Row, New York.

    Google Scholar 

  17. Lilien, G.L., P. Kotler, and K.S. Moorthy (1992), Marketing Models, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  18. Little, J.D.C. (1975), “BRANDAID: A Marketing Mix Model. Part I: Structure; Part II: Implementation,” Operations Research, 23, 628–673.

    Google Scholar 

  19. Little, J.D.C. et al (1994), Commentary on “Marketing Science’s Pilgrimage to the Ivory Tower,” by Hermann Simon. In G. Laurent, G.L. Lilien, and B. Pras, eds., Research Traditions in Marketing, 44–51, Kluwer Academic Publishers, Norwell, Massachusetts.

    Google Scholar 

  20. Parsons et al (1994), “Marketing Science, Econometrics, and Managerial Contributions,” Commentary on “Marketing Science’s Pilgrimage to the Ivory Tower,” by Hermann Simon. In G. Laurent, G.L. Lilien, and B. Pras, eds., Research Traditions in Marketing, 52–78, Kluwer Academic Publishers, Norwell, Massachusetts.

    Google Scholar 

  21. Rangaswamy, A. (1993), “Marketing Decision Models: From Linear Programs to Knowledge-based Systems.” In J. Eliashberg and G.L. Lilien, eds., Handbooks in Operations Research and Management Science: Marketing, 16, 733–771, Elsevier, Amsterdam.

    Google Scholar 

  22. Schmitz, J.D., G.D. Armstrong, and J.D.C. Little (1990), “Cover Story: Automated News Finding in Marketing,” Interfaces, 20 (6), 29–38.

    Google Scholar 

  23. Schultz, R.L. and A.A. Zoltners (1981), Marketing Decision Models, North Holland, New York.

    Google Scholar 

  24. Wind, Y. (1993), “Marketing Science at a Crossroad,” inaugural presentation of the Unilever Erasmus Visiting Professorship in Marketing at the Erasmus University, Rotterdam.

    Google Scholar 

  25. Wind, Y. and G.L. Lilien (1993), “Marketing Strategy Models,” In J. Eliashberg and G.L. Lilien, eds., Handbooks in Operations Research and Management Science: Marketing, 17, 773–826, Elsevier, Amsterdam.

    Google Scholar 

  26. Breiman, L. (1986). Probability and Stochastic Processes, With a View Toward Applications, Second Edition. The Scientific Press, Palo Alto, California.

    Google Scholar 

  27. Cinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  28. Chung, K.L. (1967). Markov Chains with Stationary Transition Probabilities. Springer-Verlag, New York.

    Google Scholar 

  29. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume I, Third Edition. Wiley, New York.

    Google Scholar 

  30. Heyman, D.P. and M.J. Sobel (1982). Stochastic Models in Operations Research, Volume I: Stochastic Processes and Operating Characteristics. McGraw-Hill, New York.

    Google Scholar 

  31. Losifescu, M. (1980). Finite Markov Processes and Their Application. Wiley, New York.

    Google Scholar 

  32. Isaacson, D.L. and R.W. Madsen (1976). Markov Chains’. Theory and Applications. Wiley, New York.

    Google Scholar 

  33. Karlin, S. and H.M. Taylor (1975). A First Course in Stochastic Processes, Second Edition. Academic Press, New York.

    Google Scholar 

  34. Kemeny, J.G. and J.L. Snell (1976). Finite Markov Chains. Springer-Verlag, New York.

    Google Scholar 

  35. Kemeny, J.G., J.L. Snell, and A.W. Knapp (1966). Denumerable Markov Chains. Van Nostrand, Princeton.

    Google Scholar 

  36. Parzen, E. (1962). Stochastic Processes. Holden-Day, San Francisco.

    Google Scholar 

  37. Bertsekas, D.P. (1976). Dynamic Programming and Stochastic Control. Academic Press, New York.

    Google Scholar 

  38. Derman, C. (1970). Finite State Markovian Decision Processes. Academic Press, New York.

    Google Scholar 

  39. Howard, R. (1971). Dynamic Programming and Markov Processes. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  40. Ross, S.M. (1970). Applied Probability Models with Optimization Applications. Holden-Day, San Francisco.

    Google Scholar 

  41. White, D.J. (1969). Dynamic Programming. Holden-Day, San Francisco.

    Google Scholar 

  42. Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York.

    Google Scholar 

  43. Breiman, L. (1968). Probability. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  44. Breiman, L. (1986). Probability and Stochastic Processes, With a View Toward Applications, Second Edition. The Scientific Press, Palo Alto, California.

    Google Scholar 

  45. Cassandras, C.G. (1993). Discrete Event Systems: Modeling and Performance Analysis. Irwin, Boston.

    Google Scholar 

  46. Chellappa, R. and A. Jain, eds. (1993). Markov Random Fields: Theory and Application. Academic Press, San Diego.

    Google Scholar 

  47. Qinlar, E. (1975). Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  48. Chung, K.L. (1967). Markov Chains with Stationary Transition Probabilities. Springer-Verlag, New York.

    Google Scholar 

  49. Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume I, Third Edition. Wiley, New York.

    Google Scholar 

  50. Feller, W. (1971). An Introduction to Probability Theory and Its Applications, Volume II, Second Edition. Wiley, New York.

    Google Scholar 

  51. Fox, B.L. (1990). “Generating Markov-Chain Transitions Quickly.” ORSA J. Comput. 2, 126– 135.

    Google Scholar 

  52. Glynn, P.W. (1989). “A GSMP Formalism for Discrete Event Systems.” Proc. IEEE 77, 14–23.

    Google Scholar 

  53. Glynn, P.W. (1990). “Diffusion Approximations.” In Handbooks in OR and MS, Volume 2, D.P. Heyman and M.J. Sobel (eds.). Elsevier Science Publishers, Amsterdam, 145–198.

    Google Scholar 

  54. Grassman, W.K. (1990). “Computational Methods in Probability.” In Handbooks in OR and MS, Volume 2, D.P. Heyman and M.J. Sobel (eds.). Elsevier Science Publishers, Amsterdam, 199– 254.

    Google Scholar 

  55. Gross, D. and D.R. Miller (1984). “The Randomization Technique as a Modelling Tool and Solution Procedure for Transient Markov Processes.” Oper. Res. 32, 343–361.

    Google Scholar 

  56. Heyman, D.P. and M.J. Sobel (1982). Stochastic Models in Operations Research, Volume I: Stochastic Processes and Operating Characteristics. McGraw-Hill, New York.

    Google Scholar 

  57. Hordijk, A., D.L. Iglehart, and R. Schassberger (1976). “Discrete-time methods for simulating continuous-time Markov chains.” Adv. Appl. Probab. 8, 772–778.

    Google Scholar 

  58. Howard, R.A. (1971). Dynamic Probabilistic Systems, Volume I: Markov Models. Wiley, New York.

    Google Scholar 

  59. Iosifescu, M. (1980). Finite Markov Processes and their Application. Wiley, New York.

    Google Scholar 

  60. Isaacson, D.L. and R.W. Madsen (1976). Markov Chains: Theory and Applications. Wiley, New York.

    Google Scholar 

  61. Karlin, S. and H.M. Taylor (1975). A First Course in Stochastic Processes, Second Edition. Academic Press, New York.

    Google Scholar 

  62. Karlin, S. and H.M. Taylor (1981). A Second Course in Stochastic Processes. Academic Press, New York.

    Google Scholar 

  63. Keilson, J. (1979). Markov Chain Models-Rarity and Exponentiality. Springer-Verlag, New York.

    Google Scholar 

  64. Kelly, F.P. (1979). Reversibility and Stochastic Networks. Wiley, New York.

    Google Scholar 

  65. Kemeny, J.G. and J.L. Snell (1976). Finite Markov Chains. Springer-Verlag, New York.

    Google Scholar 

  66. Kemeny, J.G., J.L. Snell, and A.W. Knapp (1966). Denumerable Markov Chains. Van Nostrand, Princeton.

    Google Scholar 

  67. Kindermann, R. and J.L. Snell (1980). Markov Random Fields and their Applications. American Mathematical Society, Providence, Rhode Island.

    Google Scholar 

  68. Maistrov, L.E. (1974). Probability Theory: A Historical Sketch. Academic Press, New York.

    Google Scholar 

  69. Neuts, M.F. (1981). Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University Press, Baltimore.

    Google Scholar 

  70. Parzen, E. (1962). Stochastic Processes. Holden-Day, San Francisco.

    Google Scholar 

  71. Snell, J.L. (1988). Introduction to Probability. Random House, New York.

    Google Scholar 

  72. Whitt, W. (1980). “Continuity of Generalized Semi-Markov Processes.” Math. Opns. Res. 5, 494–501.

    Google Scholar 

  73. Whittle, P. (1986). Systems in Stochastic Equilibrium. Wiley, New York.

    Google Scholar 

  74. Ball, M.O. and U. Derigs (1983). “An Analysis of Alternate Strategies for Implementing Matching Algorithms,” Networks 13, 517–549.

    Google Scholar 

  75. Coffman, E.G., Jr. and R.L. Graham (1972). “Optimal Scheduling for Two Processor Systems,” Acta Inform. 1, 200–213.

    Google Scholar 

  76. Derigs, U. and A. Metz (1986). “On the Use of Optimal Fractional Matchings for Solving the (Integer) Matching Problem,” Computing, 36, 263–270.

    Google Scholar 

  77. Edmonds, Jl. (1965a). “Paths, Trees, and Flowers,” Canad. Jl Math., 17, 449–467.

    Google Scholar 

  78. Edmonds, Jl. (1965b). “Maximum Matching and a Polyhedron with (0,1) Vertices,” Jl. Res, Nat. Bur. Standards Sect. J3, 69B, 125–130.

    Google Scholar 

  79. Edmonds, Jl. and E.L. Johnson (1973). “Matching, Euler Tours and the Chinese Postman,” Math. Programming, 5, 88–124.

    Google Scholar 

  80. Even, S. and O. Kariv (1975). “An Algorithm for Maximum Matching in General Graphs,” 16th Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, New York, 100–112.

    Google Scholar 

  81. Gahl, Z., S. Micali and H. Gabow (1982). “Priority Queues with Variable Priority and an 0(EVlogV) Algorithm for finding a Maximal Weighted Matching in General Graphs,” 23rd Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, New York, 255–261.

    Google Scholar 

  82. Gabow, H.N. (1976). “An Efficient Implementation of Edmond’s Algorithm for Maximum Matching on Graphs,” Jl. Assoc. Comput. Mach., 23, 221–234.

    Google Scholar 

  83. Gondran, Michel and Michel Minoux (1984). Graphs and Algorithms. John Wiley, Chichester.

    Google Scholar 

  84. Jonker, R. and A. Volgenant (1986). “Improving the Hungarian Assignment Algorithm,” Opl Res. Lett., 5, 171–175.

    Google Scholar 

  85. Kuhn, H.W. (1955). “The Hungarian Method for the Assignment Problem,” Naval Res. Logist. Quart., 2, 83–97.

    Google Scholar 

  86. Kuhn, H.W. (1956). “Variants of the Hungarian Method for Assignment Problems,” Naval Res. Logist. Quart., 3, 253–258.

    Google Scholar 

  87. Kwan, Mei-Ko (1962). “Graphic Programming Using Odd and Even Points,” Chinese Math., 1, 273–277.

    Google Scholar 

  88. Lawler, E.L. (1976). Combinatorial Optimization, Networks and Matroids. Holt, Rinehart and Winston, New York.

    Google Scholar 

  89. Lovasz L. and M.D. Plummer (1986). Matching Theory. Annals of Discrete Mathematics, vol. 29, North-Holland, Amsterdam.

    Google Scholar 

  90. McHugh, James A. (1990). Algorithmic Graph Theory. Prentice-Hall, London.

    Google Scholar 

  91. Micali, S. and V.V. Vazirani (1980). “An Algorithm for Finding Maximum Matching in General Graphs,” 21st Annual Symposium on Foundations of Computer Science, IEEE Computer Society Press, New York, 17–27.

    Google Scholar 

  92. Wright, M.B. (1990). “Speeding Up the Hungarian Algorithm,” Computers Opns Res., 11, 95–96.

    Google Scholar 

  93. Apple, J.M. and H.M. Rickles (1987). “Material Handling and Storage,” Production Handbook, John A. White, ed., Wiley, New York.

    Google Scholar 

  94. Barger, B.F. (1987). “Materials Handling Equipment,” Production Handbook, John A. White, ed., Wiley, New York.

    Google Scholar 

  95. Egbelu, P.J. (1993). “Positioning of Automated Guided Vehicles in a Loop Layout to Improve Response Time,” European Journal of Operational Research, 71, 32–44.

    Google Scholar 

  96. Han, M.-H. and L.F. McGinnis (1989). “Control of Material Handling Transporter in Automated Manufacturing,” HE Transactions, 21, 184–190,

    Google Scholar 

  97. Hausman, W.H., L.B. Schwarz, and S.C. Graves (1976). “Optimal Assignment in Automatic Warehousing Systems,” Management Science, 22, 629– 638.

    Google Scholar 

  98. Kim, K.H. and J.M.A. Tanchoco (1993), “Economical Design of Material Flow Paths,” International Journal of Production Research, 31, 1387–1407.

    Google Scholar 

  99. Kouvelis, P. and H.L. Lee (1990). “The Material Handling Systems Design of Integrated Manufacturing System,” Annals Operations Research, 26, 379–396.

    Google Scholar 

  100. Maxwell, W.L., and J.A. Muckstadt (1982). “Design of Automated Guided Vehicle Systems,” HE Transactions, 14, 114–124.

    Google Scholar 

  101. Roll, Y., M.J. Rosenblatt, and D. Kadosh (1989). “Determining the Size of a Warehouse Container,” International Journal of Production Research, 27, 1693–1704.

    Google Scholar 

  102. Rosaler, R.C. and J.O. Rice, eds. (1983). Standard Handbook of Plant Engineering, McGraw Hill, New York.

    Google Scholar 

  103. Rosenblatt, M.J., Y. Roll, and V. Zyser (1993). “A Combined Optimization and Simulation Approach to Designing Automated Storage/Retrieval Systems,” HE Transactions, 25, 40–50.

    Google Scholar 

  104. Tompkins, J.A. and J.A. White (1984). Facilities Planning, John Wiley, New York.

    Google Scholar 

  105. White, J.A (1982). “Factory of Future Will Need Bridges Between Its Islands of Automation,” Industrial Engineering, 14, 4, 60–68.

    Google Scholar 

  106. Lay, D.C. (1993). Linear Algebra and its Applications, Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  107. Strang, G. (1988). Linear Algebra and its Applications, 3rd. ed., Harcourt Brace Jovanovich, Orlando, Florida.

    Google Scholar 

  108. Abate, J., Choudhury, G.L. and Whitt, W. (1994), “Asymptotics for steady-state tail probabilities in structured Markov queueing models,” Stochastic Models, 10, 99–143.

    Google Scholar 

  109. Asmussen, S. and Perry, D. (1992), “On cycle maxima, first passage problems and extreme value theory for queues,” Stochastic Models, 8, 421–458.

    Google Scholar 

  110. Asmussen, S. and Ramaswami, V. (1990), “Probabilistic interpretation of some duality results for the matrix paradigms in queueing theory,” Stochastic Models, 6, 715–733.

    Google Scholar 

  111. Falkenberg, E. (1994), “On the asymptotic behavior of the stationary distribution of Markov chains of M/G/l-type,” Stochastic Models, 10, 75–97.

    Google Scholar 

  112. Gail, H.R., Hantler, S.L. and Taylor, B.A. (1994), “Solutions of the basic matrix equations for the M/G/1 and G/M/1 Markov chains,” Stochastic Models, 10, 1–43.

    Google Scholar 

  113. Latouche, G. (1985), “An exponential semi-Markov Process, with applications to queueing theory,” Stochastic Models, 1, 137–169.

    Google Scholar 

  114. Latouche, G. (1993), “Algorithms for infinite Markov chains with repeating columns,” in Linear Algebra, Markov Chains and Queueing Models, Meyer, C.D. and Plemmons, R.J., eds., Springer Verlag, New York, 231–265.

    Google Scholar 

  115. Latouche, G. and Ramaswami, V. (1993), “A logarithmic reduction algorithm for quasi-birth-and- death processes,” Jl Appl. Prob., 30, 650–674.

    Google Scholar 

  116. Lucantoni, D.M. (1991), “New results on the single server queue with a batch Markovian arrival process,” Stochastic Models, 7, 1–46.

    Google Scholar 

  117. Lucantoni, D.M. (1993), “The BMAP/G/1 queue: a tutorial,” in Models and Techniques for Performance Evaluation of Computer and Communications Systems, L. Donatiello and R. Nelson, eds., Springer-Verlag, New York.

    Google Scholar 

  118. Lucantoni, D.M., Meier-Hellstern, K.S., and Neuts, M.F. (1990), “A single server queue with server vacations and a class of non-renewal arrival processes,” Adv. Appl. Prob., 22, 676–705.

    Google Scholar 

  119. Neuts, M.F. (1979), “A versatile Markovian point process,” Jl Appl. Prob., 16, 764–779.

    Google Scholar 

  120. Neuts, M.F. (1981), Matrix-Geometric Solutions in Stochastic Models: An Algorithmic Approach, The Johns Hopkins University Press, Baltimore. Reprinted by Dover Publications, 1994.

    Google Scholar 

  121. Neuts, M.F. (1986), “The caudal characteristic curve of queues,” Adv. Appl. Prob., 18, 221–254.

    Google Scholar 

  122. Neuts, M.F. (1986), “Generalizations of the Pollaczek-Khinchin integral equation in the theory of queues,” Adv. Appl. Prob., 18, 952–990.

    Google Scholar 

  123. Neuts, M.F. (1989), Structured Stochastic Matrices of M/G/1 Type and Their Applications, Marcel Dekker, New York.

    Google Scholar 

  124. Neuts, M.F. (1992), “Models Based on the Markovian Arrival Process,” IEEE Trans. Communications, Special Issue on Teletraffic, E75–B, 1255– 1265.

    Google Scholar 

  125. Neuts, M.F. and Narayana, S. (1992), “The first two moment matrices of the counts for the Markovian arrival process,” Stochastic Models, 8, 459–477.

    Google Scholar 

  126. Nisuts, M.F. and Takahashi, Y. (1981), “Asymptotic behavior of the stationary distributions in the GI/PH/c queue with heterogeneous servers,” Z. f. Wahrscheinlichkeitstheorie, 57, 441–452.

    Google Scholar 

  127. Ramaswami, V. (1988), “A stable recursion for the steady state vector in Markov chains of M/G/ 1 type,” Stochastic Models, 4, 183–188.

    Google Scholar 

  128. Ramaswami, V. (1990), “A duality theorem for the matrix paradigms in queueing theory,” Stochastic Models, 6, 151–161.

    Google Scholar 

  129. Ramaswami, V. (1990), “From the matrix-geometric to the matrix-exponential,” Queueing Systems, 6, 229–260.

    Google Scholar 

  130. Sengupta, B. (1989), “Markov processes whose steady state distribution is matrix-exponential with an application to the GI/PH/1 queue,” Adv. Appl. Prob., 21, 159–180.

    Google Scholar 

  131. Schellhaas, H. (1990), “On Ramaswami’s algorithm for the computation of the steady state vector in Markov chains of M/G/l-type,” Stochastic Models, 6, 541–550.

    Google Scholar 

  132. Tweedie, R.L. (1982). “Operator-geometric stationary distributions for Markov chains with application to queueing models,” Adv. Appl. Prob., 14, 368–391.

    Google Scholar 

  133. American College of Physicians (1994). “Guidelines for Medical Treatment for Stroke Prevention,” Annals Internal Medicine, 121, 54–55.

    Google Scholar 

  134. Bailey, N.T.J. (1967). The Mathematical Approach to Biology and Medicine, John Wiley, London.

    Google Scholar 

  135. Bailey, N.T. (1991). “The Use of Operational Modeling of HIV/AIDS in a Systems Approach to Public Health Decision Making,” Mathematical Biosciences, 107, 413–430.

    Google Scholar 

  136. Barnoon, S. and Wolfe, H. (1972). Measuring the Effectiveness of Medical Decisions: An Operations Research Approach, Clarke C. Thomas, Springfield, Illinois.

    Google Scholar 

  137. Bergeron, B.P. and Greenes, R.A. (1989). “Clinical Skill-building Simulations in Cardiology: Heart-lab and Eklab,” Computer Methods and Programs in Biomedicine, 30 (2–3), 111–126.

    Google Scholar 

  138. Boylan, R.D. (1991). “A Note on Epidemics in Heterogeneous Populations,” Mathematical Biosciences, 105, 133–137.

    Google Scholar 

  139. Dolan, J.G. and Bordley, D.R. (1991). “Should Concern Over Gastric Cancer Influence the Choice of Diagnostic Tests in Patients with Acute Upper Gastrointestinal Bleeding?” Proceedings of the Second International Symposium on the Analytic Hierarchy Process, Pittsburgh, Pennsylvania, 391–404.

    Google Scholar 

  140. Emmons, H. (1968). “The Optimal Use of Radioactive Pharmaceuticals in Medical Diagnosis,” Doctoral Dissertation, The Johns Hopkins University, Baltimore.

    Google Scholar 

  141. Esogbue, A.C., Aggarwal, V. and Kaujalgi, V. (1976). “Computer-Aided Anesthesia Administration,” Int. JL Biomedical Computing, 7, 271–288.

    Google Scholar 

  142. Flagle, C.D. (1967). “A Decision Theoretical Comparison of Three Procedures of Screening for a Single Disease,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, Berkeley.

    Google Scholar 

  143. Garfield, D.A., Rapp, C., and Evens, M. (1992). “Natural Language Processing in Psychiatry: Artificial Intelligence Technology and Psychopathology,” JL Nervous and Mental Disease, 180, 227–237.

    Google Scholar 

  144. Gorry, G.A. (1968). “Strategies for Computer Aided Diagnosis,” Mathematical Biosciences, 2, 293–318.

    Google Scholar 

  145. Gorry, G.A. and Barnett, G.O. (1968). “Experience with a Model of Sequential Diagnosis,” Computers in Biomedical Research, 1, 490–507.

    Google Scholar 

  146. Gustafson, D.H., Taylor, J.O., Thompson, S. and Chesney, P. (1993). “Assessing the Needs of Breast Cancer Patients and Their Families,” Quality Management in Health Care, 2 (1), 6–17.

    Google Scholar 

  147. Harris, C.M. and Rattner, E. (1992). “Forecasting the Extent of the HIV/AIDS Epidemic,” Socio-Econ. Plann. Sci, 26 (3), 149–168.

    Google Scholar 

  148. Kaplan, E.H. (1991). “Mean-max Bounds for Worst Case Endemic Mixing Models,” Matm. Bioscience, 105, 97–109.

    Google Scholar 

  149. Kaplan, E.H. and Brandeau, M.L., eds. (1994). Modeling the AIDS Epidemic: Planning, Policy, and Prediction, Raven, New York.

    Google Scholar 

  150. Ledley, R.S. and Lusted, L.B. (1959). “Reasoning Foundation of Medical Diagnosis,” Science, 130, 9–29.

    Google Scholar 

  151. Lonwe, B. and Heiji, A. (1993). “Computer-assisted Instruction in Emergency Ophthalmological Care,” Acta Ophthalmologica, 71, 289–295.

    Google Scholar 

  152. Mangasarian, O.L., Setiono, R., and Wolberg, W.H. (1990). “Pattern Recognition via Linear Programming: Theory and Application to Medical Diagnosis,” in Large-Scale Numerical Optimization, Thomas F. Coleman and Yuying Li, eds., SIAM, Philadelphia, 22–30.

    Google Scholar 

  153. Mangasarian, O.L., Street, W.N., and Wolberg, W.H. (1994). “Breast Cancer Diagnosis and Prognosis via Linear Programming,” University of Wisconsin Computer Sciences Mathematical Programming Technical Report 94–10, Madison.

    Google Scholar 

  154. Morrill, S.M., Lane, R.G., Wong, J.A. and Rosen, I.I. (1991). “Dose-volume Considerations with Linear Programming Optimization,” Medical Physics, 18, 1201–1210.

    Google Scholar 

  155. Reiser, S.J. (1993). “The Era of the Patients,” JL Amer. Med. Assn., 269, 1012–1017.

    Google Scholar 

  156. Roa, L. and Gomez-Cia, T. (1994). “A Burn Patient Resuscitation Therapy Designed by Computer Similation,” Yearbook of Medical Informatics, Schattauer Verlagsgesellschaft, Stuttgart.

    Google Scholar 

  157. Rosen, I.I., Lane, R.G., Morrill, S.M., and Belli, J.A. (1991). “Treatment Plan Optimization Using Linear Programming,” Medical Physics, 18, 141– 152.

    Google Scholar 

  158. Saaty, T.L., (1981). “The Analytic Hierarchy Process and Health Care Problems,” Proceedings of International Conference on Systems Science in Health Care, Montreal, 1980.

    Google Scholar 

  159. Shortliffe, Edward H. (1976). Computer-Based Medical Consultations MYCIN, American Elsevier, New York.

    Google Scholar 

  160. Szolovits, P. and Pauker, S.C. (1978). “Categorical and Probabilistic Reasoning in Medical Diagnosis,” Artificial Intelligence, 11, 115–144.

    Google Scholar 

  161. Tanner, T.B. and Gitlow, S. (1991). “A Computer Simulation of Cardiac Emergencies,” Proceedings Annual Symposium on Computer Applications in Medical Care.

    Google Scholar 

  162. Warner, H.R. (1979). Computer Assisted Medical Decision Making, Academic Press, New York.

    Google Scholar 

  163. Weed, L.L. (1986). “Knowledge Coupling Medical Education and Patient Care,” Crit. Ref. Med. Infomatics, 1, 55–79.

    Google Scholar 

  164. Wolberg, W. H. and O. L. Mangasarian (1993). “Computer-designed Expert Systems for Breast Cytology Diagnosis,” Analytical and Quantitative Cytology and Histology, 15, 67–74.

    Google Scholar 

  165. Blanning, R.W. (1974). “The Sources and Uses of Sensitivity Information,” Interfaces, 4, 32–38.

    Google Scholar 

  166. Blanning, R.W. (1975a). “Response to Michel Kleijnen, and Permut,” Interfaces, 5, 24–25.

    Google Scholar 

  167. Blanning, R.W. (1975b). “The Construction and Implementation of Metamodels,” Simulation, 24, 177–184.

    Google Scholar 

  168. Friedman, L.W. (1986). “Exploring Relationships in Multiple-Response Simulation Experiments,” Omega, 14, 498–501.

    Google Scholar 

  169. Friedman, L.W. (1987). “Design and Analysis of Multivariate Response Simulations, The State of the Art,” Behavioral Science, 32, 138–148.

    Google Scholar 

  170. Friedman, L.W. (1989). “The Multivariate Meta-model in Queueing System Simulation,” Computers & Industrial Engineering, 16, 329–337.

    Google Scholar 

  171. Friedman, L.W. and H.H. Friedman (1984). “Statistical Considerations in Simulation, The State of the Art,” Jl. Statistical Computation and Simulation, 19, 237–263.

    Google Scholar 

  172. Friedman, L.W. and H.H. Friedman (1985a). “MULTIVREG, A SAS Program,” Jl Marketing Research (Computer Abstracts), 22, 216–217.

    Google Scholar 

  173. Friedman, L.W. and H.H. Friedman (1985b). “Validating the Simulation Metamodel, Some Practical Approaches,” Simulation, 25, 144–146.

    Google Scholar 

  174. Friedman, L.W. and L Pressman (1988). “The Metamodel in Simulation Analysis, Can It Be Trusted?” Jl. Operational Research Society, 39, 939–948.

    Google Scholar 

  175. Geoffrion, A.M. (1976). “The Purpose of Mathematical Programming is Insight, not Numbers,” Interfaces, 7 (1), 81–92.

    Google Scholar 

  176. Kleijnen, J.P.C. (1975). “A Comment on Blanning’s ‘Metamodel for Sensitivity Analysis’: The Regression Metamodel in Simulation,” Interfaces, 5, 21– 23.

    Google Scholar 

  177. Kleijnen, J.P.C. (1979). “Regression Metamodels for Generalizing Simulation Results,” IEEE Transactions Systems, Man, and Cybernetics, SMC-9, 93–96.

    Google Scholar 

  178. Kleijnen, J.P.C (1981). “Regression Analysis for Simulation Practitioners,” Jl. Operational Research Society, 32, 35–43.

    Google Scholar 

  179. Kleijnen, J.P.C. (1982). “Regression Metamodel Summarization of Model Behavior.” In Encyclopedia of Systems and Control ( M.G. Singh, ed.). New York, Pergamon Press.

    Google Scholar 

  180. Kleijnen, J.P.C., A.J. Van den Burg, and R. Th. van der Ham (1979). “Generalization of Simulation Results,” European Jl. Operational Research, 3, 50–64.

    Google Scholar 

  181. Lawless, R.W., L.H. Williams, and C.G. Richie (1971). “A Sensitivity Analysis Tool for Simulation with Application to Disaster Planning,” Simulation, 17, 217–223.

    Google Scholar 

  182. Morrison, D.F. (1976). Multivariate Statistical Methods, McGraw-Hill, New York.

    Google Scholar 

  183. Rose, M.R. and R. Harmsen (1978). “Using Sensitivity Analysis to Simplify Ecosystem Models: A Case Study,” Simulation, 31, 15–26.

    Google Scholar 

  184. Bankes, S. (1993). “Exploratory Modeling for Policy Analysis.” Opns. Res. 41, 435–449.

    Google Scholar 

  185. Blackett, P.M.S. (1962). Studies of War. Hill and Wang, New York.

    Google Scholar 

  186. Blue Ribbon Defense Panel (1970). Report to the President and the Secretary of Defense on the Department of Defense. U.S. Govt. Printing Office, Washington, D.C.

    Google Scholar 

  187. Brothers, L.A. (1954). “Operations Analysis in the United States Air Force.” Opns. Res. 2, 1–16.

    Google Scholar 

  188. Bureau of the Budget (1965). Planning-Programming-Budgeting, Bulletin 65–5.

    Google Scholar 

  189. Davis, P.K. and D. Blumenthal (1991). “The Base of Sand Problem: A White Paper on the State of Military Combat Modeling,” N-3148-OSD/ DARPA, RAND, Santa Monica, Calif.

    Google Scholar 

  190. Davis, P.K. and R. Hillestad (eds.) (1992). Proceedings of Conference on Variable-Resolution Modeling, Washington, D.C., CF-103-DARPA, RAND, Santa Monica, Calif.

    Google Scholar 

  191. Defense Science Board (1993). Impact of Advanced Distributed Simulation on Readiness, Training and Prototyping. DDR & E, Washington, D.C.

    Google Scholar 

  192. DoD, Office of the Inspector General (1993). Duplication j Proliferation of Weapon Systems’ Modeling and Simulation Efforts Within DOD, Arlington, Virginia.

    Google Scholar 

  193. Government Accounting Office (1980). Models, Data, And War: A Critique of the Foundation For Defense Analyses. PAD-80-21, Comptroller General, Washington, D.C.

    Google Scholar 

  194. Hitch, C.J. (1953). “Sub-optimization in Operations Problems.” Opns. Res. 1, 87–99.

    Google Scholar 

  195. Hitch, C.J. (1955). “An Appreciation of Systems Analysis.” Opns. Res. 3, 466–481.

    Google Scholar 

  196. Hitch, C.J. (1960). “Uncertainties in Operations Research.” Opns. Res. 4, 437–445.

    Google Scholar 

  197. Hitch, C.J. and R.N. McKean (1960). The Economics of Defense in the Nuclear Age. R-348, RAND, Santa Monica, Calif.

    Google Scholar 

  198. Hughes, W.P. Jr. (ed.) (1989). Military Modeling ( 2nd ed. ). JVLORS, Alexandria, VA.

    Google Scholar 

  199. Miser, H.J. and E.S. Quade (eds.) (1988). Hand-hook of Systems Analysis: Craft Issues and Procedural Choices. North-Holland, New York.

    Google Scholar 

  200. Morse, P.M. and G.E. Kimball (1946). Methods of Operations Research. OEG Rpt. 54, Office of the Chief of Naval Operations, Navy Dept., Washington, D.C.

    Google Scholar 

  201. Quade, E.S. (ed.) (1954). Analysis for Military Decisions. R-387-PR, RAND, Santa Monica, Calif.

    Google Scholar 

  202. Quade, E.S. and W.I. Boucher (eds.) (1968). Systems Analysis and Policy Planning: Applications in Defense. R-439-PR, RAND, Santa Monica, Calif.

    Google Scholar 

  203. Solandt, O. (1955). “Observation, Experiment, and Measurement in Operations Research.” Opns. Res. 3, 1–14.

    Google Scholar 

  204. Tidman, K.R. (1984). The Operations Evaluation Group, A History of Naval Operations Analysis. Naval Institute Press, Annapolis, Maryland.

    Google Scholar 

  205. Vandiver, E.B. et al. (1992). “Lessons are Learned from Desert Shield/Desert Storm.” PHALANX. 25, 1, 6–87.

    Google Scholar 

  206. Williams, M.K. and J. Sikora (1991). “SIMVAL Minisymposium - A Report,” Phalanx, Bulletin of the Military Operations Research Society, 24, 2.

    Google Scholar 

  207. Ritchie, A.E., ed. (1992). Simulation Validation Workshop Proceedings (SIMVAL II), Military Operations Research Society, Alexandria, Virginia.

    Google Scholar 

  208. Gass, S.I. (1993). “Model Accreditation: A Rationale and Process for Determining a Numerical Rating,” European Jl. Operational Research, 66, 2, 250–258.

    Google Scholar 

  209. Fossett, C., Harrison, D., Weintrob, H., and Gass, S.I. (1991). “An Assessment Procedure for Simulations Models: A Case Study,” Operations Research, 39, 710–723.

    Google Scholar 

  210. Gass, S.I. (1977a.) “Evaluation of Complex Models,” Computers and Operations Research, 4, 27–35.

    Google Scholar 

  211. Gass, S.I. (1977b). “A Procedure for the Evaluation of Complex Models,” Proceedings of the First International Conference in Mathematical Modeling, 247–258.

    Google Scholar 

  212. Gass, S.I., ed. (1980). Validation and Assessment Issues of Energy Models, National Bureau of Standards Special Publication 569, U.S. GPO Stock No. 033-003-02155-5, Washington, D.C.

    Google Scholar 

  213. Gass, S.L, ed. (1981). Validation and Assessment of Energy Models, National Bureau of Standards Special Publication 616. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  214. Gass, S.L (1983). “Decision-Aiding Models: Validation, Assessment, and Related Issues for Policy Analysis,” Operations Research, 31, 603–631.

    Google Scholar 

  215. Gass, S.L (1987). “Managing the Modeling Process: A Personal Perspective,” European Jl. Operational Research, 31, 1–8.

    Google Scholar 

  216. Wood, D.O. (1981). “Energy Model Evaluation and Analysis: Current Practice,” in S.L Gass, ed., Validation and Assessment of Energy Models, National Bureau of Standards Special Publication 616. U.S. Government Printing Office, Washington, D.C.

    Google Scholar 

  217. U.S. GAO (1979). Guidelines for Model Evaluation, GAO/PAD-79-17, Washington, D.C.

    Google Scholar 

  218. Banerjee, S. and A. Basu (1993), “Model Type Selection in an Integrated DSS Environment,” Decision Support Systems, 75–89.

    Google Scholar 

  219. Basu, A. and R. Blanning (1994), “Metagraphs: A Tool for Modeling Decision Support Systems,” Management Science, 40, 1579–1600.

    Google Scholar 

  220. Bhargava, H.K. and R. Krishnan (1993), “Computer-aided Model Construction,” Decision Support Systems, 9, 91–111.

    Google Scholar 

  221. Bhargava, H.K., S. Kimbrough and R. Krishnan (1991), “Unique Names Violations: A Problem for Model Integration,” ORS A Jl. Computing, 3, 107–120.

    Google Scholar 

  222. Bhargava, H.K. and S.O. Kimbrough (1993), “Model Management: An Embedded Languages Approach,” Decision Support Systems, 10, 277– 300.

    Google Scholar 

  223. Binbasioglu, M. and M. Jarke (1986), “Domain Specific DSS Tools for Knowledge-based Model Building,” Decision Support Systems, 2, 213– 223.

    Google Scholar 

  224. Bischop, J. and A. Meeraus (1982), “On the Development of a General Algebraic Modeling System in a Strategic Planning Environment,” Mathematical Programming Study, 20, 1–29.

    Google Scholar 

  225. Blanning, R. (1982), “A Relational Framework for Model Management,” DSS-S2 Transaction, 16–28.

    Google Scholar 

  226. Blanning, R. (1993), Decision Support Systems: Special Issue on Model Management, in Blanning, R., C. Holsapple, A. Whinston, eds., Elsevier.

    Google Scholar 

  227. Bonczek, R., C. Holsapple, and A. Whinston (1978), “Mathematical Programming within the Context of a Generalized Data Base Management System,” R.A.I.R.O. Recherche Operationalle, 12, 117–139.

    Google Scholar 

  228. Choobineh, J. (1991), “SQLMP: A data sublanguage for the representation and formulation of linear mathematical models,” ORSA Jl. Computing, 3, 358–375.

    Google Scholar 

  229. Dhar, V. and M. Jarke (1993), “On Modeling Processes,” Decision Support Systems, 9, 39–49.

    Google Scholar 

  230. Dolk, D.K. and J.E. Kotteman (1993), “Model integration and a theory of models,” Decision Support Systems, 9, 51–63.

    Google Scholar 

  231. Fourer, R. (1983), “Modeling Languages versus Matrix Generators for Linear Programming,” ACM Transactions on Mathematical Software, 2, 143–183.

    Google Scholar 

  232. Fourer, R., D. Gay, and B.W. Kernighan, “A Mathematical Programming Language,” Management Science, 36, 519–554.

    Google Scholar 

  233. Geoffrion, A.M. (1987), “An Introduction to Structured Modeling,” Management Science, 33, 547–588.

    Google Scholar 

  234. Geoffrion, A.M. (1989), “Reusing Structured Models via Model Integration,” J. F. Nunamaker, ed., Proceedings Twenty-Second Annual Hawaii International Conference on the System Sciences, III, 601–611, IEEE Press, Los Alamitos, California.

    Google Scholar 

  235. Geoffrion, A.M. (1992a), “The SML Language for Structured Modeling: Levels 1 and 2,” Operations Research, 40, 38–57.

    Google Scholar 

  236. Geoffrion, A.M. (1992b), “The SML Language for Structured Modeling: Levels 3 and 4,” Operations Research, 40, 58–75.

    Google Scholar 

  237. Gray, P. (1987), Guide to IFPS, McGraw-Hill, New York.

    Google Scholar 

  238. Greenberg, H.J. (1987), “ANALYZE: A computer-assisted analysis system for linear programming models,” Operations Research Letters, 6, 249– 255

    Google Scholar 

  239. Greenberg, H.J. (1992), “MODLER: Modeling by object-driven linear elemental relations,” Annals Operations Research, 38, 239–280.

    Google Scholar 

  240. Hoare, C.A.R. (1992), Communicating Sequential Processes, Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  241. Jones, C.V. (1991), “An Introduction to Graph Based Modeling Systems, Part II: Graph Grammars and the Implementation,” ORSA Jl. Computing, 3, 180–206.

    Google Scholar 

  242. Kimbrough, S. and J. Oliver (1994), “On Automating Candle Lighting Analysis: Insight from Search with Genetic Algorithms and Approximate Models,” J. F. Nunamaker, ed., Proceedings Twenty-Seventh Hawaii International Conference on the System Sciences, III, 536–544, IEEE Press, Los Alamitos, California.

    Google Scholar 

  243. Krishnan, R. (1993), “Model Management: Survey, Future Research Directions and a Bibliography,” ORSA CSTS Newsletter, 14, 1.

    Google Scholar 

  244. Krishnan, R. Piela, and A. Westerberg (1993), “Reusing Mathematical Models in ASCEND,” in Advances in Decision Support Systems, C. Holsapple and A. Whinston, eds., 275–294, Springer-Verlag, Munich.

    Google Scholar 

  245. Krishnan, R., X. Li, and D. Steier (1992), “Development of a Knowledge-based Model Formulation System,” Communications ACM, 35, 138– 146.

    Google Scholar 

  246. Krishnan, R. (1990), “A Logic Modeling Language for Model Construction,” Decision Support Systems, 6, 123–152.

    Google Scholar 

  247. Liang, T.P. and B.R. Konsynski (1993), “Modeling by Analogy: Use of Analogical Reasoning in Model Management Systems,” Decision Support Systems, 9, 113–125.

    Google Scholar 

  248. Ma, P.-C., F. Murphy, and E. Stohr (1989), “A Graphics Interface for Linear Programming,” Communications ACM, 32, 996–1012.

    Google Scholar 

  249. Mannino, M.V., B.S. Greenberg, and S. N. Hong (1990), “Model Libraries: Knowledge Representation and Reasoning,” ORSA Jl. Computing, 2, 287–301.

    Google Scholar 

  250. Mills, H., R. Linger and A. Hevner (1986), Principles of Information Systems Analysis and Design, Academic Press, Orlando.

    Google Scholar 

  251. Muhanna, W. (1992), “On the Organization of Large Shared of Model Bases”, Annals Operations Research, 38, 359–396.

    Google Scholar 

  252. Orlikowski, W. and V. Dhar (1986), “Imposing Structure on Linear Programming Problems: An Empirical Investigation of Expert and Vice Modelers,” Proceedings National Conference on Artificial Intelligence, Philadelphia.

    Google Scholar 

  253. Piela, R. McKelvey, and A. Westerberg (1992), “An Introduction to ASCEND: Its Language and Interactive Environment,” in J.F. Nunamaker Jr., ed., Proceedings Twenty-Fifth Annual Hawaii International Conference on System Sciences, Vol. Ill, 449–461, IEEE Press, Los Alamitos, California.

    Google Scholar 

  254. Raghunathan, S., R. Krishnan and J. May (1994), “MODFORM: A Knowledge Tool to Support the Modeling Process,” Information Systems Research, 4, 331–358.

    Google Scholar 

  255. Shetty, B. (1993), Annals of Operations Research: Special Issue on Model Management, Shetty, B., ed., J.C. Baltzer Scientific Publishing, Amsterdam.

    Google Scholar 

  256. Sprague, R.H. and H.J. Watson (1975), “Model Management in MIS,” Proceedings Seventeenth National AIDS Conference, 213–215.

    Google Scholar 

  257. Stohr, E. and B. Konsynski (1992), Information Systems and Decision Processes, IEEE Press, Los Altimos, California.

    Google Scholar 

  258. Will, H.J. “Model Management Systems” in Information Systems and Organization Structure, Edwin Grochia and Norbert Szyperski, eds., 468– 482, Walter de Gruyter, Berlin.

    Google Scholar 

  259. Asmussen, S., R.Y. Rubinstein, and C.–L. Wang (1994). “Regenerative rare events simulation via likelihood ratios,” JL Applied Probability, 31, 797–815.

    Google Scholar 

  260. Bratley, P., B. L. Fox and L.E. Schräge (1983). A Guide to Simulation, Springer-Verlag, New York.

    Google Scholar 

  261. Bucklew, J.A., P. Ney, and J.S. Sadowsky (1991). “Monte Carlo simulation and large deviations theory for uniformly recurrent Markov chains,” JL Applied Probability, 27, 44–59.

    Google Scholar 

  262. Donohue, J.M., E.G. Houck, and R.H. Myers (1992). “Simulation designs for quadratic response surface models in the presence of model misspecification,” Management Science, 38, 1765– 1791.

    Google Scholar 

  263. Heidelberger, P. (1993). “Fast simulation of rare events in queueing and reliability models,” Manuscript, IBM Research Center, Yorktown Heights, New York.

    Google Scholar 

  264. Glasserman, P. and D.D. Yao (1992). “Some guidelines and guarantees for common random numbers,” Management Science, 38, 884–908.

    Google Scholar 

  265. Glynn, P.W. and D.L. Iglehart (1988). “Simulation method for queues: an overview,” Queueing Systems, 3, 221–256.

    Google Scholar 

  266. Kleijnen, J.P.C. (1974). Statistical Techniques in Simulation, Part I, Marcel Dekker, New York.

    Google Scholar 

  267. Kleijnen, J.P.C. and W. Van Groenendaal (1992). Simulation: a Statistical Perspective, John Wiley, Chichester, UK.

    Google Scholar 

  268. Kriman, V. and R. Rubinstein (1993). “The complexity of Monte Carlo estimators with applications to rare events,” Manuscript, Technion, Haifa, Israel.

    Google Scholar 

  269. Lavenberg, S.S., T.L. Moeller and P.D. Welch (1982). “Statistical results on control variables with application to queueing network simulation,” Operations Research, 30, 182–202.

    Google Scholar 

  270. Rubinstein, R.Y. and R. Marcus (1985). “Efficiency of multivariate control variates in Monte Carlo simulation,” Operations Research, 33, 661–667.

    Google Scholar 

  271. Rubinstein, R.Y., G. Samorodnitsky, and M. Shaked (1985). “Antithetic variates, multivariate dependence and simulation of complex stochastic systems,” Management Science, 31, 66–77.

    Google Scholar 

  272. Rubinstein, R.Y. and A. Shapiro (1993). Discrete Event Systems: Sensitivity Analysis and Stochastic Optimization via the Score Function Method, John Wiley, New York.

    Google Scholar 

  273. Schruben, L.W. and B.H. Margolin (1978). “Pseudorandom number assignment in statistically designed simulation and distribution sampling experiments,” JL American Statistical Association, 73, 504–525.

    Google Scholar 

  274. Wilson, J.R. (1984). “Variance reduction techniques for digital simulation,” American JL Mathematical Management Science, 4, 277–312.

    Google Scholar 

  275. Debreu, G. (1960). “Topological Methods in Cardinal Utility Theory,” in Mathematical Methods in the Social Sciences. Stanford University Press, Stanford, California, 16–26.

    Google Scholar 

  276. Dyer, J.S. and R.K. Sarin (1979). “Measurable Multiattribute Value Functions,” Operations Research, 27, 810–822.

    Google Scholar 

  277. Farquhar, P.H. (1977). “A Survey of Multiattribute Utility Theory and Applications,” TIMS Stud. Management Science, 6, 59–89.

    Google Scholar 

  278. Fishburn, P.C. (1964). Decision and Value Theory. Wiley, New York.

    Google Scholar 

  279. Fishburn, P.C. (1965a). “Independence in Utility Theory with Whole Product Sets,” Operations Research, 13, 28–45.

    Google Scholar 

  280. Fishburn, P.C. (1965b). “Utility Theory,” Management Science, 14, 335–378.

    Google Scholar 

  281. Gorman, W.M. (1968). “Symposium on Aggregation: The Structure of Utility Functions,” Rev. Econ. Stud., 35, 367–390.

    Google Scholar 

  282. Keeney, R.L. (1969). Multidimensional Utility Functions: Theory, Assessment, and Applications. Technical Report No. 43, Operations Research Center, M.I.T., Cambridge, Massachusetts.

    Google Scholar 

  283. Keeney, R.L. and H. Raiffa (1976). Decisions with Multiple Objectives: Preferences and Value Tradeoffs. Wiley, New York.

    Google Scholar 

  284. Luce, R.D and J.W. Tukey (1964). “Simultaneous Conjoint Measurement: A New Type of Fundamental Measurement,” J. Math Psychol., 1, 1–27.

    Google Scholar 

  285. Luce, R.D., R.R. Bush and E. Galantor (1965). Handbook of Mathematical Psychology, Vol. 3. Wiley, New York.

    Google Scholar 

  286. Sarin, R.K. (1975). “Interactive Procedures for Evaluation of Multi-Attributed Alternatives.” Working Paper 232, Western Management Science Institute, University of California, Los Angeles.

    Google Scholar 

  287. von Neumann, J. and O. Morgenstern (1947). Theory of Games and Economic Behavior, Princeton University Press, New Jersey.

    Google Scholar 

  288. Edwards, W. and D. von Winterfeldt (1986). Decision Analysis and Behavioral Research. Cambridge University Press, Cambridge, England.

    Google Scholar 

  289. Ahuja, R.K., T.L. Magnanti, and J.B. Orlin (1993), Network Flows: Theory, Algorithms, and Applications, Prentice Hall, New Jersey.

    Google Scholar 

  290. Ali, A., R. Helgason., J. Kennington, and H. Lall (1980), “Computational Comparison Among Three Multicommodity Network Flow Algorithms,” Operations Research, 28, 995–1000.

    Google Scholar 

  291. Ali, A., D. Barnett, K. Farhangian, J. Kennington, B. McCarl, B. Patty, B. Shetty, and P. Wong (1984), “Multicommodity Network Flow Problems: Applications and Computations,” HE Transactions, 16, 127–134.

    Google Scholar 

  292. Assad, A.A. (1978), “Multicommodity Network Flows - A Survey,” Networks, 8, 37–91.

    Google Scholar 

  293. Barnhart, C. (1993), “Dual Ascent Methods for Large-Scale Multicommodity Flow Problems,” Naval Research Logistics, 40, 305–324.

    Google Scholar 

  294. Bellmore, M., G. Bennington, and S. Lubore (1971), “A Multivehicle Tanker Scheduling Problem,” Trans, Sci., 5, 36–47.

    Google Scholar 

  295. Chen, R. and R. Meyer (1988), “Parallel Optimization for Traffic Assignment,” Math. Programming, 42, 347–345.

    Google Scholar 

  296. S. Clark and J. Surkis (1968), “An Operations Research Approach to Racial Desegregation of School Systems,” Socio-Econ. Plan. Sci., 1, 259– 272.

    Google Scholar 

  297. Evans, J. (1978), “The Simplex Method for Integral Multicommodity Networks,” Naval Research Logistics, 25, 31–38.

    Google Scholar 

  298. Evans, J. and J. Jarvis (1978), “Network Topology and Integral Multicommodity Flow Problems,” Networks, 8, 107–120.

    Google Scholar 

  299. Farvolden, J.M. and W.B. Powell (1990), “A Primal Partitioning Solution for Multicommodity Network Flow Problems,” Working Paper 90–04, Department of Industrial Engineering, University of Toronto, Toronto, Canada.

    Google Scholar 

  300. Farvolden, J.M., W.B. Powell, and I.J. Lustig (1993), “A Primal Partitioning Solution for the Arc-Chain Formulation of a Multicommodity Network Flow Problem,” Operations Research, 41, 669–693 (1993).

    Google Scholar 

  301. Gersht, A. and A. Shulman (1987), “A New Algorithm for the Solution of the Minimum Cost Multicommodity Flow Problem,” Proceedings of the IEEE Conference on Decision and Control, 26, 748–758.

    Google Scholar 

  302. Graves, G.W. and R.D. McBride (1976), “The Factorization Approach to Large Scale Linear Programming,” Math. Programming, 10, 91– 110.

    Google Scholar 

  303. Grigoriadis, M.D. and W.W. White (1972), “A Partitioning Algorithm for the Multi-commodity Network Flow Problem,” Math. Programming, 3, 157–177.

    Google Scholar 

  304. Hartman, J.K. and L.S. Lasdon (1972), “A Generalized Upper Bounding Algorithm for Multicommodity Network Flow Problems,” Networks, 1, 331–354.

    Google Scholar 

  305. Held, M., P. Wolfe, and H. Crowder (1974), “Validation of Subgradient Optimization,” Math. Programming, 6, 62–88.

    Google Scholar 

  306. Kennington, J. and M. Shalaby (1977), “An Effective Subgradient Procedure for Minimal Cost Multicommodity Flow Problems,” Management Science, 23, 994–1004.

    Google Scholar 

  307. Kennington, J.L. (1978), “A Survey of Linear Cost Multicommodity Network Flows,” Opera tions Research, 26, 209–236.

    Google Scholar 

  308. Kennington, J.L. and R. Helgason (1980), Al gorithms for Network Programming, John Wiley Inc., New York.

    Google Scholar 

  309. LeBlanc, L.J. (1973), “Mathematical Program ming Algorithms for Large Scale Network Equi librium and Network Design Problems,” Unpublished Dissertation, Industrial Engineer ing and Management Sciences Department Northwestern University.

    Google Scholar 

  310. Naniwada, M. (1969), “Multicommodity Flows in a Communications Network,” Electronics and Communications in Japan, 52-A, 34–41.

    Google Scholar 

  311. Pilar, M.C. and S.A. Zenios (1990), “Parallel Decomposition of Multicommodity Network Flows Using Smooth Penalty Functions,” Technical Report 90-12-06, Department of Decision Sciences, Wharton School, University of Pennsylvania, Philadelphia.

    Google Scholar 

  312. Potts, R.B. and R.M. Oliver (1972), Flows in Transportation Networks, Academic Press, New York.

    Google Scholar 

  313. Shetty, B. and R. Muthukrishnan (1990), “A Parallel Projection for the Multicommodity Network Model,” Jl. Operational Research, 41, 837–842.

    Google Scholar 

  314. Swoveland, C. (1971), “Decomposition Algorithms for the Multi-Commodity Distribution Problem,” Working Paper, No. 184, Western Management Science Institute, University of California, Los Angeles.

    Google Scholar 

  315. Benayoun, R., J. de Montgolfier, J. Tergny, and O. Larichev (1971). “Linear Programming with Multiple Objective Functions: Step Method (STEM),” Mathematical Programming 1, 366–375.

    Google Scholar 

  316. Chankong, V. and Y.Y. Haimes (1978). “The Interactive Surrogate Worth Trade-off (ISWT) Method for Multiobjective Decision Making,” in S. Zionts, ed., Multiple Criteria Problem Solving, Lecture Notes in Economics and Mathematical Systems 155, 42–67.

    Google Scholar 

  317. Climaco, J.C.N, and C.H. Antunes (1987). “TRIMAP - An Interactive Tricriteria Linear Programming Package,” Foundations Control Engineering 12 (3), 101–120.

    Google Scholar 

  318. Franz, L.S. and S.M. Lee (1981). “A Goal Programming Based Interactive Decision Support System,” Lecture Notes in Economics and Mathematical Systems 190, 110–115.

    Google Scholar 

  319. Gabbani, D. and M. Magazine (1986). “An Interactive Heuristic Approach for Multi-Objective Integer–Programming Problems,” Jl. Operational Research Society 37, 285–291.

    Google Scholar 

  320. Gardiner, L.R. and R.E. Steuer (1994). “Unified Interactive Multiple Objective Programming,” European JL Operational Research 74, 391–406.

    Google Scholar 

  321. Geoffrion, A.M., J.S. Dyer, and A. Feinberg (1972). “An Interactive Approach for Multicriterion Optimization, with an Application to the Operation of an Academic Department,” Management Science 19, 357–368.

    Google Scholar 

  322. Goicoechea, A., D.R. Hanson, and L. Duckstein (1982). Multiobjective Decision Analysis with Engineering and Business Applications, John Wiley, New York.

    Google Scholar 

  323. Isermann, H. and R.E. Steuer (1988). “Computational Experience Concerning Payoff Tables and Minimum Criterion Values over the Efficient Set,” European Jl. Operational Research 33, 99–97.

    Google Scholar 

  324. Jaszkiewicz, A. and R. Slowinski (1992). “Cone Contraction Method with Visual Interaction for Multi-Objective Non-Linear Programmes,” Jl. Multi-Criteria Decision Analysis 1, 29–46.

    Google Scholar 

  325. Korhonen, P.J. and J. Laakso (1986). “A Visual Interactive Method for Solving the Multiple Criteria Problem,” European Jl. Operational Research 24, 277–287.

    Google Scholar 

  326. Korhonen, P. J. and J. Wallenius (1988). “A Pareto Race,” Naval Research Logistics 35, 615– 623.

    Google Scholar 

  327. Nakayama, H. and Y. Sawaragi (1984). “Satisficing Trade-off Method for Multiobjective Programming,” Lecture Notes in Economics and Mathematical Systems 229, 113–122.

    Google Scholar 

  328. Sakawa, M. and H. Yano (1990). “An Interactive Fuzzy Satisficing Method for Generalized Multi-objective Programming Problems with Fuzzy Parameters,” Fuzzy Sets and Systems 35, 125– 142.

    Google Scholar 

  329. Sobol, I.M. and R.B. Statnikov (1981). Optimal Parameters Choice in Multicriteria Problems, Nauka, Moscow.

    Google Scholar 

  330. Spronk, J. (1981). Interactive Multiple Goal Programming, Martinus Nijhoff Publishing, Boston.

    Google Scholar 

  331. Steuer, R. E. (1986). Multiple Criteria Optimization: Theory, Computation, and Application, John Wiley, New York.

    Google Scholar 

  332. Steuer, R.E. (1995). “ADBASE Multiple Objective Linear Programming Package,” Faculty of Management Science, University of Georgia, Athens, Georgia.

    Google Scholar 

  333. Steuer, R.E. and E.-U. Choo (1983). “An Interactive Weighted Tchebycheff Procedure for Multiple Objective Programming,” Mathematical Programming 26, 326–344.

    Google Scholar 

  334. Wierzbicki, A.P. (1982). “A Mathematical Basis for Satisficing Decision Making,” Mathematical Modelling 3, 391–405.

    Google Scholar 

  335. Wierzbicki, A.P. (1986). “On the Completeness and Constructiveness of Parametric Characterizations to Vector Optimization Problems,” OR Spektrum 8, 73–87.

    Google Scholar 

  336. Yu, P.L. (1985). Multiple-Criteria Decision Making: Concepts, Techniques and Extensions, Plenum Press, New York.

    Google Scholar 

  337. Zeleny, M. (1982). Multiple Criteria Decision Making, McGraw-Hill, New York.

    Google Scholar 

  338. Zionts, S. and J. Wallenius (1976). “An Interactive Programming Method for Solving the Multiple Criteria Problem,” Management Science 22, 652–663.

    Google Scholar 

  339. Belton, B. (1986), “A Comparison of the Analytic Hierarchy Process and a Simple Multi-Attribute Value Function,” European Jl. Operational Research, 26, 7–21.

    Google Scholar 

  340. Belton, B., and Gear, A.E. (1983), “On a Shortcoming of Saaty’s Method of Analytic Hierarchies,” Omega, 11, 227–230.

    Google Scholar 

  341. Benayoun, R., De Montgolfier, J., Tergny, J. and Larichev, O. (1971), “Linear Programming with Multiple Objective Functions: Step Method (STEM),” Mathematical Programming, 1, 366–375.

    Google Scholar 

  342. Bitran, G.R. and Rivera, J.M. (1982), “A Combined Approach to Solving Binary Multicriteria Problems,” Naval Research Logistics, 29, 181–201.

    Google Scholar 

  343. Chankong, V. Haimes, Y.Y., Thadathil, J. and Zionts, S. (1984), “Multiple Criteria Optimization: A State of the Art Review,” in Decision Making with Multiple Objectives, Springer-Verlag, Berlin, 36–90.

    Google Scholar 

  344. Geoffrion, A.M. (1968), “Proper Efficiency and the Theory of Vector Maximization,” Jl. Mathematical Analysis and Applications, 22, 618–630.

    Google Scholar 

  345. Keeney, R.L. and Raiffa, H. (1976), Decisions with Multiple Objectives: Preferences and Value Tradeoffs, John Wiley, New York.

    Google Scholar 

  346. Klein, D. and Hannan, E. (1982), “An Algorithm for the Multiple Objective Integer Linear Programming Problem,” European JL Operational Research, 9, 378–385.

    Google Scholar 

  347. Korhonen, P., and Laakso, J. (1986), “A Visual Interactive Method for Solving the Multiple Criteria Problem,” European JL Operational Research, 24, 277–287.

    Google Scholar 

  348. Korhonen, P., Wallenius, J. and Zionts, S. (1984), “Solving the Discrete Multiple Criteria Problem Using Convex Cones,” Management Science, 30, 1336–1345.

    Google Scholar 

  349. Lee, S.M. (1972), Goal Programming for Decision Analysis, Auerbach Publishers, Philadelphia.

    Google Scholar 

  350. Lotii, v., Stewart, T.J., and Zionts, S. (1992), “An Aspiration–Level Interactive Model for Multiple Criteria Decision Making,” Computers and Operations Research, 19, 671–681.

    Google Scholar 

  351. Pasternak, H. and Passy, V. (1973), “Bicriterion Mathematical Programs with Boolean Variables,” in Multiple Criteria Decision Making, University of South Carolina Press, Columbia.

    Google Scholar 

  352. Ramesh, R., Karwan, M.H. and Zionts, S. (1989), “Preference Structure Representation Using Convex Cones in Multicriteria Integer Programming,” Management Science, 35, 1092–1105.

    Google Scholar 

  353. Saaty, Thomas L. (1980), The Analytic Hierarchy Process, McGraw-Hill, New York.

    Google Scholar 

  354. Simon, H. (1957), Administrative Behavior, The Free Press, New York.

    Google Scholar 

  355. Steuer, R.E. (1976), “Multiple Objective Linear Programming with Interval Criterion Weights,” Management Science, 23, 305–316.

    Google Scholar 

  356. Villarreal, B. and Karwan, M.H. (1981), “Multi-criteria Integer Programming: A (Hybrid) Dynamic Programming Recursive Approach,” Mathematical Programming, 21, 204–223.

    Google Scholar 

  357. Yu, P.L. and Zeleny, M. (1976), “Linear Multi-parametric Programming by Multicriteria Simplex Method,” Management Science, 23, 159–170.

    Google Scholar 

  358. Zionts, S. and Wallenius, J. (1976), “An Interactive Programming Method for Solving the Multiple Criteria Problem,” Management Science, 22, 652–663.

    Google Scholar 

  359. Zionts, S. and Wallenius, J. (1980), “Identifying Efficient Vectors: Some Theory and Computational Results,” Operations Research, 28, 788–793.

    Google Scholar 

  360. Zionts, S. and Wallenius, J. (1983), “An Interactive Multiple Objective Linear Programming Method for a Class of Underlying Nonlinear Utility Functions,” Management Science, 29, 519–529.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gass, S.I., Harris, C.M. (1996). M. In: Gass, S.I., Harris, C.M. (eds) Encyclopedia of Operations Research and Management Science. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0459-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0459-3_13

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8058-0

  • Online ISBN: 978-1-4613-0459-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics