Advertisement

Purines and Myocardial Protection: An Overview

  • Anwar-Saad A. Abd-Elfattah
  • Jian-Hua Guo
  • El-Mostafa El-Guessab
  • Shin-Ping Gao
  • Yang Gu
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 181)

Abstract

Although the morbidity and mortality associated with coronary artery bypass graft (CABG) surgery in uncomplicated cases is currently low, recent studies suggest that morbidity and mortality are increasing as the demographic profile of these patients changes. Patients presenting for CABG surgery are now older and sicker. Most of these patients are being sustained on multiple medical therapies such as β-adrenergic receptor and calcium channel blockers, and have had one or more angioplasties. Recent estimates conclude that the number of angioplasties performed exceeds the number of CABG operations per year. Coronary artery restenosis occurs in a large number of patients after angioplasty procedure. It has been shown that there is a strong causal relationship between myocardial ischemia before cardiopulmonary bypass surgery and the outcome of surgery. Myocardial ischemia occurring prior to bypass doubles or triples the risk of subsequent myocardial infarction. Indicators of perioperative ischemia include electrocardiographic determination of ST segment depression; increases in left ventricular end-diastolic pressure and segmental wall motion, wall thickening abnormalities and release of purines and enzymes. Indeed, purine in plasm has been used as a sensitive index of ischemia (1,2). Both segmental shortening and wall thickening abnormalities provide the most sensitive clinical measure of ischemia.

Keywords

Reperfusion Injury Adenine Nucleotide Myocardial Protection Salvage Pathway Cardioplegic Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fox AC, Reed GE, Meilman H, Silk BB: Release of nucleoside from canine and human hearts as an index of prior ischemia. Am J Cardiol 1979; 43:52–58.PubMedCrossRefGoogle Scholar
  2. 2.
    Grum CM, Ketai LH, Myers CL, Shlafer M: Purine efflux after cardiac ischemia: Relevance to allopurinol cardioprotection. Am J Physiol 1987; 252:H368–373.PubMedGoogle Scholar
  3. 3.
    Edmunds LH, Ellison N, Colman RW, et al: Platelet function during cardiac operation: Comparison of membrane and bubbler oxygenator. J Thorac Cardiovasc Surg 1982; 83: 805–812.PubMedGoogle Scholar
  4. 4.
    Lazenby WD, Ko W, Weksler BB, et al: Platelet function and hemostasis after cardiopulmonary bypass: A comparison of hypothermia and normothermic cardiopulmonary bypass. Surg Form 1990; 41:307–309.Google Scholar
  5. 5.
    Abd-Elfattah AS, Salter DR, Murphy CE, Goldstein TP, Brunsting LA, Wechsler AS: Metabolic differences between retrograde and antegrade cardioplegia following reversible normothermic global ischemic injury. Surg Forum 1986; 37:267–270.Google Scholar
  6. 6.
    Wechsler AS, Salter DR, Murphy CE, Goldstein JP, Brunsting LA, Abd-Elfattah AS: Metabolic diffeernces of retrograde cardioplegia. In: Clinics of CSI., Mole W, Daxon D, Woner E, (Eds). Steinkoff-Verlag Darmstdt, 1986, pp. 181–187.Google Scholar
  7. 7.
    Salter DR, Goldstein JP, Abd-Elfattah AS, Murphy CE, Morris JJ III, Wechsler AS: Efficacy of continuous retrograde coronary sinus cardioplegia without topical hypothermia in the normal and hypertrophic canine ventricle. Surg Forum 1985; 36:192.Google Scholar
  8. 8.
    Gundry SR, Kirsh MM: Comparison of retrograde cardioplegia versus antegrade cardioplegia in the presence of coronary artery obstruction. Ann Thorac Surg 1984; 38:114–127.Google Scholar
  9. 9.
    Silverman NA, Schmitt G, Levitsky S, Feinberg H: Effect of coronary artery occlusion on myocardial protection by retroperfusion of cardioplegic solution. J Surg Res 1985; 39:164.PubMedCrossRefGoogle Scholar
  10. 10.
    Abd-Elfattah AS, Ding M, Wechsler AS: Protection of the stunned myocardium: Selective nucleoside transport blocker (NBMPR) administered after 20 minutes of ischemia augments recovery of ventricular function. Circulation 1993; 88[part 2]:336–343.Google Scholar
  11. 11.
    Abd-Elfattah, AS, Ding M, Dyke CM, Dignan R, Wechsler AS: Attenuation of ventricular dysfunction “stunning” following normothermic ischemia and hypothermic cardioplegic arrest by augmentation of endogenous adenine nucleosides [abstract]. Circulation 1992; 86 (suppl I): 1–103.Google Scholar
  12. 12.
    Abd-Elfattah AS, Jessen ME, Lekven J, Doherty NE III, Brunsting LA, Wechsler AS: Myocardial reperfusion injury: Role of myocardial hypoxanthine and xanthine in free-radical mediated reperfusion injury. Circulation 1988; 78(Suppl III): III-224–235.Google Scholar
  13. 13.
    Abd-Elfattah AS, Jessen ME, Hanan SA, Tuchy G, Wechsler AS: Is adenosine 5′- triphosphate derangement or free-radical-mediated injury the major cause of ventricular dysfunction during reperfusion? Role of adenine nucleotide transport in myocardial reperfusion injury. Circulation 1990; 82(suppl IV): IV-341–350.Google Scholar
  14. 14.
    Abd-Elfattah AS, Jessen ME, Wechsler AS: Nucleoside trapping prevents ventricular dysfunction“stunning” in absence of adenosine: Possible separation between ischemic and reperfusion injury. J Thorac Cardiovasc Surg 1994; 108:269–278.PubMedGoogle Scholar
  15. 15.
    Zuoghabi ME, Abd-Elfattah AS, Jeroudi MO, Sun J-Z, Sekili S, Li XY, Bolli R: Inhibitors of adnosine deamninase and nucleoside transport attenuate myocardial ‘stunning’ independently of coronary flow or hemodynamic effects. Circulation 1993; 88(suppl I):2359–2369.Google Scholar
  16. 16.
    Rouslin W, Erickson JL, Solaro RJ: Effects of oligomycin and acidosis on rates of ATP depletion in ischemic heart muscle. Am J Physiol 1986; 250:H503–H508.PubMedGoogle Scholar
  17. 17.
    Ferrari R, Lissa F, Raddino R, Visioli O: The effect of ruthenium red on mitochondrial function during post-ischemic reperfusion. J Mol Cell Cardiol 1982; 14:737–740.PubMedCrossRefGoogle Scholar
  18. 18.
    Cunningham JN, Adams PX, Knopp tttt, et al: Preservation of ATP ultrastructural and ventricular function after aortic cross-clamping and reperfusion. J Thorac Cardiovasc Surg 1979; 78:72–78.Google Scholar
  19. 19.
    Chiu RCJ, Blendall PE, Scott HJ, Cain S: The importance of monitoring intramyocardial temperature during hypothermia myocardial protection. Ann Thorac Surg 1979; 28:317–272.PubMedCrossRefGoogle Scholar
  20. 20.
    Melrose DA, Dreyer B, Bentall HH, Baker JBF: Elective cardiac arrest. Lancet 1955; 2:21–22.CrossRefGoogle Scholar
  21. 21.
    Helmworth JA, Kaplan S, Clark L Jr, McAdams AJ, Mathews EC, Edwards FK: Myocardial injury associated with systole induced with potassium citrate. Ann Surg 1959; 149:200.CrossRefGoogle Scholar
  22. 22.
    Cohen NM, Allen CA, Beiz MK et al.: Electrophysiologic consequences of hypothermic hyperkalemic elective cardiac arrest. J Card Surg 1993;8:156–160.PubMedCrossRefGoogle Scholar
  23. 23.
    Cohen NM, Wise RM, Wecsler AS, et al.: Elective cardiac arrest with a hyperpolirizing adenosine triphosphate sensitive potassium channel operner. A novelform of myocardial protection. J Thorac Cardiovasc Surg 1993;106:317–328.PubMedGoogle Scholar
  24. 24.
    Damiano RJ, Cohen NM: Hyperpolarized arrest attenuates myocardial stunning folloooooowing global surgical ischemia: An alternative to traditional hyperkalemic cardioplegia J Card Surg 1994;9(suppl):517–525.PubMedGoogle Scholar
  25. 25.
    Shumway NE: Forward versus retrograde coronary perfusion for direct vision surgery of acquired aortic valvular disease. J Thorac Cardiovasc Surg 1959; 38:75.PubMedGoogle Scholar
  26. 26.
    Menasche P, Kural S, Fauchet M, Lavergne A, Commin P, Bercot M, Touchet B, Georgiopoulos G, Piwnica A: Retrograde coronary sinus perfusion: A safe alternative for ensuring cardioplegic delivery in aortic valve surgery. Ann Thorac Surg 1982; 34:647.PubMedCrossRefGoogle Scholar
  27. 27.
    Rebeyka IM, Hanan SA, Borges MR, Lee KF, Yeh T, Tuchy GA, Abd-Elfattah AS, William WG, Wechsler AS: Rapid cooling contracture of the myocardium: Adverse effect of rearrest cardiac cooling. Surg Forum 1989; 40:243–245.Google Scholar
  28. 28.
    Lofland GK, Abd-Elfattah AS, Wyse R, DeLeval M, Stark J, Wechsler AS: Myocardial adenine nucleotide pool metabolism in human infants and children during hypothermic cardioplegic arrest and normothermic ischemia. Ann Surg 1989; 47:663–668.Google Scholar
  29. 29.
    Baker JE, Boerboom LE, Olinger GN: Age-related changes in the ability of hypothermia and cardioplegia to protect ischemic rabbit myocardium. J Thorac Cardiovasc Surg 1987; 93:163–172.Google Scholar
  30. 30.
    Kepsford RD, Hearse DJ: Protection of the immature heart: Temperature-dependent beneficial or detrimental effects of multidase crystalloid cardioplegia in the neonatal rabbit heart. J Thorac Cardiovasc Surg 1990; 99:269–279.Google Scholar
  31. 31.
    Abd-Elfattah AS, Godwin CK, McRae RL, Hamm DP, Wechsler AS: Biochemical bases for tolerance of newborn hearts at ischemic injury: Developmental differences in adenine nucleotide degradation in ischemic immature and adult myocardium: A possible role of sarcolemmal 5′-nucleotidase. Pediatr Res 1985; 9:122AGoogle Scholar
  32. 32.
    Abd-Elfattah AS, Murphy CE, Salter DR, Goldstein JP, Godwin CK, Wechsler AS: Age- and species-related differences in adenine nucleotide degradation during myocardial global ischemia. Fed Proc 1986; 45:1039.Google Scholar
  33. 33.
    Abd-Elfattah AS, Murphy CE, Salter DR, Brunsting LA, Goldsting LA, Goldstein JP, Wechsler AS: Maturational role of myocardial 5′-nucleotidase and AMP-deaminase isoenzymes in the increased tolerance of immature hearts to ischemic injury. Circulation 1986; 74(Suppl II):II-492.Google Scholar
  34. 34.
    Jessen ME, Abd-Elfattah AS, Lekven J, Brunsting LA, Dohrty NE, Wechsler AS: Sensitivity of neonatal hearts to ischemia: Confusion from failure to control the bathing media during ischemia. Surg Forum 1987; 38:226–227.Google Scholar
  35. 35.
    Abd-Elfattah AS, Wechsler AS: Superiority of HPLC to assay for enzymes regulating adenine nucleotidase pool intermediates metabolism: 5′-nucleotidase, adenylate deaminase, adenosine deaminase and adenylosuccinate layase: A simple and rapid determination of adenosine. J Liquid Chromatogr 1987; 10:2653–2694.CrossRefGoogle Scholar
  36. 36.
    Bulkely GB: Free radical-mediated reperfusion injury: A selective review. Br J Cancer 1987; 55(Suppl I):66–73.Google Scholar
  37. 37.
    Jennings RB, Ganote CE, Reimer KA Ischemic tissue injury. Am J Pathol 1975; 81:179–198.PubMedGoogle Scholar
  38. 38.
    Jennings RB, Reimer KA, Steenbergen C: Complete global myocardial ischemia in dogs. Crit Care Med 1988; 16:988–996.PubMedCrossRefGoogle Scholar
  39. 39.
    Schaper W, Schaper J: Problems associated with reperfusion of ischemic myocardium. In: Pathophysiology of severe ischemic myocardial injury. Pipers HM, eds., Kluwar Academic Publishers, Boston Mass, 1990. pp 269–280.CrossRefGoogle Scholar
  40. 40.
    Abd-Elfattah AS, Wechsler AS: Separation between ischemic and reperfusion injury by site specific entrapment of endogenous adenosine and inosine using NBMPR and EHNA. J Cardiac Surgery 1994;9[Suppl]:387–396.Google Scholar
  41. 41.
    Abd-Elfattah AS, Ding M, Wechsler AS: Myocardial stunning and preconditioning: Age-, species-, and model-related differences: Role of AMP-5′-nucleotidase in myocardial injury and protection. J Cardiac Surg 8:(Suppl): 257–261, 1993.Google Scholar
  42. 42.
    Abd-Elfattah, Jessen ME, Hanan SA, Tuchy G, Wechsler AS: ATP derangement versus free radical-mediated injury [Reply]. Circulation 1991;84:2207–2208.Google Scholar
  43. 43.
    Abd-Elfattah AS, Wechsler AS: Differentiation between ischemic and reperfusion injury: Role of adenine nucleotide transport. Jap J Pharmacol 1990; 52(Suppl III):86P.Google Scholar
  44. 44.
    McCord JM; Oxygen-derived free-radicals in post-ischemic tissue injury. N Engl J Med 1985; 312:159–163.PubMedCrossRefGoogle Scholar
  45. 45.
    Przyklenk K, Kloner RA: “Reperfusion injury” by oxygen-derive free radicals: Effect of superoxide dismutase plus catalase, given at the time of reperfusion, on myocardial infarct size, contractile function, coronary microvasculature, and regional myocardial blood flow. Circ Res 1989; 64:86–96.PubMedGoogle Scholar
  46. 46.
    Jolly SR, Kane WJ, Bailie WB, Abrams GD, Lucchesi BR: Canine myocardial reperfusion injury: Its reduction by the combined administration of superoxide dismutase and catatase. Cire Res 1984; 54:227–285.Google Scholar
  47. 47.
    Badylak SF, Simmons A, Rursk J, Balbs CF: Protection from reperfusion injury in the isolated rat heart by post-ischemic defroxamine and oxypurinol administration. Cardiovasc Res 1987; 21:500–506.PubMedCrossRefGoogle Scholar
  48. 48.
    Jolly SR, Kane WJ, Hook BG, Abrams GD, Kunkel SL, Lucchesi BR: Reduction of myocardial infarct size by neutrophil depletion: Effect of duration of occlusion. Am Heart J 1986; 112:682–690.PubMedCrossRefGoogle Scholar
  49. 49.
    Dworkin GH, Abd-Elfattah AS, Yeh T Jr, Wechsler AS: Effect of recombinant human superoxide dismutase (rHSOD) on left ventricular contractility after global myocardia ischemia. Circulation 1990; 82(Suppl V):359–366.Google Scholar
  50. 50.
    Shlafer M, Kane PF, Kirsh MM: Superoxide dismutase plus catatase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J Thorac Cardiovasc Surg 1982; 83:830–839.PubMedGoogle Scholar
  51. 51.
    Chi L, Tamura Y, Hoff PT, Macha M, Gallagher KP, Schork MA, Leucchesi BR: Effect of superoxide dismutase on myocardial infarct size in the canine heart after 6 hours of regional ischemia and reperfusion: A demonstration of myocardial salvage. Circ Res 1989; 64:665–675.PubMedGoogle Scholar
  52. 52.
    Lehman J, Dyke C, Abd-Elfattah AS, Yeh T Jr, Ding M, Ezrin A, Wechsler AS: Preadministration of polyethylene glycol-conjugated superoxide dismutase (PEG-SOD) attenuates reperfusion injury when administered 24 hours before ischemia. (Submitted).Google Scholar
  53. 53.
    Uraizee A, Reimer KA, Murry CE, et al: Failure of superoxide dismutase to limit size of myocardial infarction after 40 minutes of ischemic and 4 days of reperfusion in dogs. Circulation 1987; 75:1237–1248.PubMedCrossRefGoogle Scholar
  54. 54.
    Gallagher KP, Buda AJ, Pace D, et al: Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 4 hours of occlusion followed by reperfusion. Circulation 1986; 73:1065–1076.PubMedCrossRefGoogle Scholar
  55. 55.
    Richard VJH, Murry CE, Jennings RB, Reimer KA Therapy to reduce free radicals during early reperfusion does not limit the size of myocardial infarcts caused by 90 minutes of ischemia in dogs. Circulation 1988; 78:473–480.PubMedCrossRefGoogle Scholar
  56. 56.
    Miura T, Ogawa S, Ociwa H, Adachi T, et al: Human superoxide dismutase failed to limit the size of myocardial infarct after 20-, 30-, or 60-minute ischemia and 72-hour reperfusion in the rabbit. Jap Circ J 1989; 53:786–794.PubMedCrossRefGoogle Scholar
  57. 57.
    Tasmura Y, Chi LG, Driscoll EM Jr, Hoff PT, et al: Superoxide dismutase conjugated to polyethylene glycol provides sustained protection against myocardial ischemia/reperfusion injury in canine heart. Circ Res 1988; 63:944–959.Google Scholar
  58. 58.
    Plagemann PGW, Wohlhueter RM: Hypoxanthinetransport in mammlian cells: Cell typespecific differences in sensitivity to inhibition by dipyridamole and uridine. J Memr Biol 1984;44:574–579.Google Scholar
  59. 59.
    Sabina RL, Kernstine KH, Boyd RL, Holmes EW: Metabolism of 5-amino-4-imidazolecarboxamide riboside cardiac and skeletal muscle. J Biol Chem 1982; 257:10178–10183.PubMedGoogle Scholar
  60. 60.
    Vinten-Johansen J, Nakanishi K, McGee DS, and Zhao ZQ: Acadesine improves surgical myocardial protection with blood cardioplegia in ischemically injured hearts. Circulation. 1992.86. pp.I-104Google Scholar
  61. 61.
    Hon M, Kitakaje T: AICA-riboside (5-amino-4-imidazole carbosamide riboside 100) a novel adenosine poleutiater attenuates myocardial stunning [abstract]. Circulation 1990 82(Suppl III):III-466.Google Scholar
  62. 62.
    Molina-Viamonte V, Rosen MR: AlC-riboside suppresses arrhythmias induced by coronary artery occlusion and reperfusion. Circulation 1990 82(Suppl III):III-645. [Abstract].Google Scholar
  63. 63.
    Abd-Elfattah AS, Sheffield C, Forsberg DA, Murphy BC, Salter DR, Wechsler AS: Myocardial protection with brono-adenosine monophosphate (Br-AMP) during global ischemia and reperfusion. A novel inhibition of 5′-nucleotidase in cardiomyocytes. Circulation 1986; 74(Suppl II):II-357.Google Scholar
  64. 64.
    Okamura T, Nakagawa A, Susuki A Myocardial protection with bromo-adenosine monophosphate (Br-AMP) as an adjunet to cardioplegic solution [abstract]. J Mol Cell Cardiol 1989; 21(Suppl):S.121.Google Scholar
  65. 65.
    Frick GP, Lowenstein JM: Studies of 5′-nucleotidase of the heart. J Biol Chem 1976; 250:6372.Google Scholar
  66. 66.
    Newby AC, Worku Y, Holmquist CA Adenosine formation, evidence for a direct biochemical link with energy metabolism. Adv Myocardial 1984; 6:273–284.Google Scholar
  67. 67.
    Imai S, Nakazawa H, Imai H, Jin H: 5′-nucleotidase inhibitors and myocardial reactive hyperemia and adenosine content.Google Scholar
  68. 68.
    Newby AC, Worku Y, Meghji P: Critical elevation of the role of ecto- and cytosolic 5′-nucleotidase in adenosine formation. In: Topics and perspectives in adenosine research. Gerlach E, Becker BF, eds., Springer-Verlag, 1987. pp 155–169.Google Scholar
  69. 69.
    Dendorfer A, Lauk S, Schaff A, Nées S: New insight into the mechanism of myocardial adenosine formation. In: Topics and perspectives in adenosine research. Gerlach E, Becker BF, eds., Springer-Verlag, 1987. pp. 170–189.Google Scholar
  70. 70.
    Ward JB, Wang MC, Einzig S, et al: Prevention of ATP catabolism during myocardial ischemia: A preliminary report. J Surg Res 1983; 34:292.PubMedCrossRefGoogle Scholar
  71. 71.
    Abd-Elfattah AS, Murphy CE, Salter DR, Brunsting LA, Goldsting LA, Goldstein JP, Wechsler AS: Maturational role of myocardial 5′-nucleotidase and AMP-deaminase isoenzymes in the increased tolerance of immature hearts to ischemic injury. Circulation 1986; 74(Suppl II):II-492.Google Scholar
  72. 72.
    Henry PD, Sobel BE, Braunwald E: Protection ofo hypoxic guinea pig hearts with glucose and insulin. Am J Physiol 1974; 226:309.PubMedGoogle Scholar
  73. 73.
    Hewitt RL, Lolley DM, Androuny GA, Drapanas T: Protective effect of glycogen and glucose on the anoxic arrested heart. Surgery 1974; 75:1.PubMedGoogle Scholar
  74. 74.
    Hearse DJ, Steward A, Braimbridge MV: Myocardial protection during ischemic arrest, posible deleterious effects of glucose and marritol in coronary infusâtes. J Thorac Cardiovasc Surg 1978; 76:16.PubMedGoogle Scholar
  75. 75.
    Lazar HL, Buckberg GD, Manganaro AJ, Becker H: Reversal of ischemic damage with amino acid substrate enhancement. J Thorac Cardiovasc Surg 1980; 88:700–709.Google Scholar
  76. 76.
    Rosenkranz ER, Okamoto F, Buckberg GD, Robertson JM: Safety of prolonged aortic clamping with cardioplegia. III. Aspartate enhancement of glutamate-blood cardioplegia in energy-depleted hearts after ischemic and reperfusion injury. J Thorac Cardiovasc Surg 19861 91:428–435.PubMedGoogle Scholar
  77. 77.
    Hass GS, DeBoer LWV, O’Keefe DD, et al: Reduction of post-ischemic myocardial dysfunction by substrate repletion during reperfusion. Circulation 1984; 70(Suppl I):65.Google Scholar
  78. 78.
    Rosenkranz ER, Buckberg GD, Laks H, Mulder D: Warm induction of cardioplegia with glutmate-enhancer blood in coronary patients with cardiogenic shock who are dependent on inotropic drugs and intra-aortic bypass support. J Thorac Cardiovas Surg 1983; 86:507–518.Google Scholar
  79. 79.
    Rosenkranz ER, Vinten-Johansen J, Buckberg GD, Otomoto F, Edwards H, Bugyi H: Benefits of normothemermic induction of blood cardioplegia in energy-depleted hearts wu& maintenance of arrest by multidose cold blood cardioplegic infusion. J Thorac Cardiovasc Surg 1982; 84:667–677PubMedGoogle Scholar
  80. 80.
    McDonagh PF, Laks H, Chaudry IH, et al: Improved myocardial recovery for ischemia: Treatment with low dose adenosine triphosphate-magnesium chloride. Arch Surg 1984; 119:1379–1384.PubMedGoogle Scholar
  81. 81.
    Kopf GS, Chaudry IH, Condos SG, Bauer AE: Improved myocardial performance after prolonged ischemia with ATP-MgCl2 cardioplegia. Surg Forum 1986; 37:234–236.Google Scholar
  82. 82.
    Robinson LA, Braimbridge MV, Hearse DJ, Jones RH: Creatine phosphate: An additive myocardial protective and antiarrhythmic agent in cardioplegia. J Thorac Cardiovasc Surg 1984; 87:190–200.PubMedGoogle Scholar
  83. 83.
    Mankad PS, Cheslir AH, Yacoub MH: Role of potassium concentration in cardioplegic solution in mediating endothelial damage. Ann Thorac Surg 1991; 51:89–93.PubMedCrossRefGoogle Scholar
  84. 84.
    Ely SW, Mentzer RM, Lasley RD, Lee BK, Berne RM: Functional and metabolic evidence of enhanced myocardial tolerance to ischemia and reperfusion. J Thorac Cardiovasc Surg 1985; 90:549–556.PubMedGoogle Scholar
  85. 85.
    Olafsson B, Forman MB, Puett DW, et al: Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: Importance of the endothelium and the no-reflow phenomenon. Circulation 1987; 76:1135–1145.PubMedCrossRefGoogle Scholar
  86. 86.
    Babbitt OG, Virmani R, Forman M: Intracoronary adenosine administered after reperfusion limits vascular injury after prolonged ischemia in the canine model. Circulation 1989; 80:1388–1399.PubMedCrossRefGoogle Scholar
  87. 87.
    Ramos-Salazer A, Baines AD: Role of 5′-nucleotidase in adenosine-mediated renal vasoconstriction during hypoxia. J Pharmacol Exp Ther 1986; 230:494–499.Google Scholar
  88. 88.
    Ceccarelli M, Ciompi ML, Pasero G: Acute renal failure during adenine therapy in the leschnyhan syndrome. In: Purine metabolism in man, Sperling P, De Vries AS, Wyngaarden JB, eds., Raven Press, New York, 1974. pp 671–679.Google Scholar
  89. 89.
    Smiseth O A Inosine infusion in dogs with acute ischemic left ventricular function: Favorable effects on myocardial performance and metabolism. Cardiovasc Res 1983; 17:192.PubMedCrossRefGoogle Scholar
  90. 90.
    Silverman NA, Köhler J, Finberg H, Levisky S: Beneficial metabolic effect of nucleoside augmentation on reperfusion injury following cardioplegic arrest. Chest 1983; 83:787.PubMedCrossRefGoogle Scholar
  91. 91.
    de Jong JW, Tavenier M, Lee van der, Bradamante S: Cardioprotection with adenosine, inosine and hypoxanthine. In: Abd-Elfattah ASA, Wechsler AS. Purines and Myocardial Protection. Kluwe Academic Publishers, Norwell, Mass, 1995. In Press.Google Scholar
  92. 92.
    Robinson LA Haywood DL: Nucleoside-enriched cardioplegia metabolic protection during ischemia. J Mol Cell Cardiol 1989; 21(Suppl II):S121. [Abstract]CrossRefGoogle Scholar
  93. 93.
    Zimmer HG, Ibel H, Steinkopff G, Kord G: Reduction of isoproterenol-induced alternation in cardiac adenine nucleotide and morphology by ribose. Science 1980; 207:319.PubMedCrossRefGoogle Scholar
  94. 94.
    Zimmer GH, Gerlach E: Effect of beta adrenergic stimulation on myocardial adenine nucleotide metabolism. Circ Res 1974; 35:536.PubMedGoogle Scholar
  95. 95.
    Pasque MK, Spray TL, Pellam GL, et al: Ribose-enhanced myocardial recovery following ischemia in isolated working rat heart. J Thorac Cardiovasc Surg 1982; 83:390.PubMedGoogle Scholar
  96. 96.
    Zimmer HG: Acceleration of adenine nucleotide biosynthesis after ischemic insult. In: Myocardial energy metabolism, de Jong JW, eds., Martinus Niihoff Publisher, Dordrecht, The Netherlands, 1988. pp 105–114.CrossRefGoogle Scholar
  97. 97.
    Zimmer HG, Gerlach E: Studies on the regulation of the biosynthesis of myocardial adenine nucleotides. Adv Exp Med Biol 1977; 70A:40.Google Scholar
  98. 98.
    Sterling K: Direct thyroid hormone activation of mitochondrial: The role of adenine nucleotide translocase. Endocrinol 1986; 119:292–295.CrossRefGoogle Scholar
  99. 99.
    Schrader WP, West C: Localization of adenosine deaminase and adenosine deaminase complex protein in rabbit heart: Implications for adenosine metabolism. Cir Res 1990; 66:754–762.Google Scholar
  100. 100.
    Becker BF, Gerlach E: Uric acid, the major adenine nucleotide catabolite released from isolated perfused guinea pig is formed in the coronary endothelium [abstract]. J Mol Cell Cardiol 1986; 18(Supp I):157.Google Scholar
  101. 101.
    Werms W, Shea MJ, Mitso S, et al: Reduction of the size infarction by allopurinnol in the ischemic reperfuse canine heart. Circulation 1986; 3:518–524.CrossRefGoogle Scholar
  102. 102.
    Puitt DW, Forman MB, Cates CU, Fiesinger GC, Virmani R: Oxypurinol limits myocardial stunning but not infact size after reperfusion. Circulation 1987; 76:678–686.CrossRefGoogle Scholar
  103. 103.
    Reimer KA, Jennings RB: Failure of xanthine oxidase inhibitor allopurinol to limit infact size after ischemia and reperfusion in dogs. Circulation 1985; 71:1069–1075.PubMedCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Anwar-Saad A. Abd-Elfattah
    • 1
  • Jian-Hua Guo
    • 1
  • El-Mostafa El-Guessab
    • 1
  • Shin-Ping Gao
    • 1
  • Yang Gu
    • 1
  1. 1.Division of Cardiothoracic Surgery, Department of Surgery, Medical College of VirginiaVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations