Skip to main content

Alterations in Energy Substrate Metabolism During Oxidative Stress

  • Chapter
Purines and Myocardial Protection

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

  • 51 Accesses

Abstract

The cardioprotective effects of adenosine, that have been observed in numerous conditions associated with myocardial ischemia (stunning, regional and global reperfusion injury, myocardial infarction and cardioplegic arrest) have been reviewed in detail in this text and elsewhere, e.g. (1,2). Of great interest is the observation that adenosine appears to mimic ischemic preconditioning, a process by which a brief period of ischemia alters myocardial metabolism and renders the heart more tolerant to a subsequent prolonged period of ischemia (2). The precise mechanisms underlying the beneficial effects of adenosine and preconditioning are not fully understood, but it is clear that adenosine, whether released from the heart during ischemia, or whether administered exogenously, can exert multiple actions, many of which are potentially protective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 1992;85:893–904.

    PubMed  CAS  Google Scholar 

  2. Mullane K. Myocardial preconditioning. Part of the adenosine revival. Circulation 1992;85:845–847.

    PubMed  CAS  Google Scholar 

  3. Saddik M, Lopaschuk GD. Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 1991;266:8162–8170.

    PubMed  CAS  Google Scholar 

  4. Neely JR, Morgan HE. Relationship between carbohydrate and lipid metabolism and the energy balance of the heart. Ann Rev Physiol 1974;36:413–459.

    Article  CAS  Google Scholar 

  5. Opie LH. Carbohydrates and lipids. The Heart. Physiology and Metabolism, 2nd edition. In Opie LH, editor. Raven Press, New York, NY, 1991;208–246.

    Google Scholar 

  6. Lopaschuk GD, Belke DB, Gamble J, Itoi T, Schonekess BO. Regulation of fatty acid oxidation in the mammalian heart in health and disease. Biochim Biophys Acta 1994;1213:263–276.

    PubMed  CAS  Google Scholar 

  7. Patel MS, Roche TE. Molecular biology and biochemistry of pyruvate dehydrogenase complexes. FASEB J 1990;4:3224–3233.

    PubMed  CAS  Google Scholar 

  8. Lopaschuk GD, Wambolt RB, Barr RL. An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 1993;264:135–144.

    PubMed  CAS  Google Scholar 

  9. Dennis SC, Gevers W, Opie LH. Protons in ischemia: where do they come from; where do they go to? J Mol Cell Cardiol 1991;23:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  10. Finegan BA, Lopaschuk GD, Coulson CS, Clanachan AS. Adenosine alters glucose use during ischemia and reperfusion in isolated rat hearts. Circulation 1993;87:900–908.

    PubMed  CAS  Google Scholar 

  11. Collins-Nakai RL, Noseworthy D, Lopaschuk GD. Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol 1994;267. (In press)

    Google Scholar 

  12. Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD. Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 1994;267:H742–H750.

    PubMed  CAS  Google Scholar 

  13. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res 1989;65:1045–1056.

    PubMed  CAS  Google Scholar 

  14. Lopaschuk GD, Spafford MA, Davies NJ, Wall SR. Glucose and palmitate oxidation in isolated working rat hearts reperfused after a period of transient global ischemia. Circ Res 1990;66:546–553.

    PubMed  CAS  Google Scholar 

  15. Lopaschuk GD, Collins-Nakai R, Olley PM, et al Plasma fatty acid levels in infants and adults after myocardial ischemia. Am Heart J 1994;128:61–67.

    Article  PubMed  CAS  Google Scholar 

  16. Huang XQ, Liedtke AJ. Alterations in fatty acid oxidation in ischemic and reperfused myocardium. Mol Cell Biochem 1989;88:145–153.

    Article  PubMed  CAS  Google Scholar 

  17. Lopaschuk GD, Wall SR, Olley PM, Davies NJ. Etomoxir, a carnitine palmitoyltransferase I inhibitor, protects hearts from fatty acid-induced ischemic injury independent of changes in long chain acylcarnitine. Circ Res 1988;63:1036–1043.

    PubMed  CAS  Google Scholar 

  18. McVeigh JJ, Lopaschuk GD. Dichloroacetate stimulation of glucose oxidation improves recovery of ischemic rat hearts. Am J Physiol 1990;259:H1079–H1085.

    PubMed  CAS  Google Scholar 

  19. Laster SB, Becker LC, Ambrosio G, Jacobus WE. Reduced aerobic metabolic efficiency in globally “stunned” myocardium. J Mol Cell Cardiol 1989;21:419–426.

    Article  PubMed  CAS  Google Scholar 

  20. Furukawa S, Kreiner G, Bavaria JE, Streicher JT, Edmunds LHJ. Recovery of oxygen utilization efficiency after global myocardial ischemia. Ann Thorac Surg 1991;52:1063–1068.

    Article  PubMed  CAS  Google Scholar 

  21. Schulz R, El-Alaoui Talibi Z, Cianachan AS, Lopaschuk GD. Myocardial ischemia-reperfusion injury uncouples contractile function from both mitochondrial tricarboxylic acid (TCA) cycle activity and oxygen consumption (MVO2). Can J Physiol Pharmacol 1994;72:P1.3.3.

    Article  Google Scholar 

  22. Fralix TA, Murphy E, London RE, Steenbergen C. Protective effects of adenosine in the perfused rat heart: changes in metabolism and intracellular ion homeostasis. Am J Physiol 1993;264:C986–C994.

    PubMed  CAS  Google Scholar 

  23. Hata K, Takasago T, Saeki A, Nishioka T, Goto Y. Stunned myocardium after rapid correction of acidosis. Increased oxygen cost of contractility and the role of the Na+-H+ exchange system. Circ Res 1994;74:794–805.

    PubMed  CAS  Google Scholar 

  24. Zimmer SD, Ugurbil K, Michurski SP, et al. Alterations in oxidative function and respiratory regulation in the post-ischemic myocardium. J Biol Chem 1989;264:12402–12411.

    PubMed  CAS  Google Scholar 

  25. Suarez J, Rubio R. Regulation of glycolytic flux by coronary flow in guinea pig heart. Role of vascular endothelial cell glycocalyx. Am J Physiol 1991,261:H1994–H2000.

    PubMed  CAS  Google Scholar 

  26. Weissel M, Brugger G, Raberger G, Kraupp O. The effects of adenosine on coronary conductance, cardiac dynamics and myocardial metabolism of the isolated perfused cat heart. Pharmacology 1974;12:120–128.

    Article  PubMed  CAS  Google Scholar 

  27. Finegan BA, Clanachan AS, Coulson CS, Lopaschuk GD. Adenosine modification of energy substrate use in isolated hearts perfused with fatty acids. Am J Physiol 1992;262:H1501–H1507.

    PubMed  CAS  Google Scholar 

  28. Buxton DB, Kjaer Pedersen K, Nguyen A Metabolic effects of adenosine in the isolated perfused rat heart. J Mol Cell Cardiol 1992;24:173–181.

    Article  PubMed  CAS  Google Scholar 

  29. El-Alaoui Talibi Z, Lopaschuk GD, Schulz R, Clanachan AS. Adenosine improves the efficiency of coupling between energy production and mechanical work in reperfused rat hearts. Can J Physiol Pharmacol 1994;72:P17.1.2.

    Google Scholar 

  30. Wyatt DA, Edmunds MC, Rubio R, Berne RM, Lasley RD, Mentzer RM Jr. Adenosine stimulates glycolytic flux in isolated perfused rat hearts by Al-adenosine receptors. Am J Physiol 1989;257:H1952–H1957.

    PubMed  CAS  Google Scholar 

  31. Janier MF, Vanoverschelde JL, Bergmann SR, Adenosine protects ischemic and reperfused myocardium by receptor-mediated mechanisms. Am J Physiol 1993;264:H163–H170.

    PubMed  CAS  Google Scholar 

  32. Vander Heide RS, Reimer KA, Jennings RB. Adenosine slows ischaemic metabolism in canine myocardium in vitro: relationship to ischaemic preconditioning. Cardiovasc Res 1993;27:669–673.

    Article  Google Scholar 

  33. Kobayashi K, Neely JR. Control of maximum rates of glycolysis in rat cardiac muscle. Circ Res 1979;44:166–175.

    PubMed  CAS  Google Scholar 

  34. Finegan BA, Coulson CS, Lopaschuk GD, Clanachan AS. Effect of A1 and A2 adenosine receptor agonists on glucose use in isolated working rat hearts. Circulation 1992;86:1–430.

    Google Scholar 

  35. Abd Elfattah AS, Jessen ME, Hanan SA, Tuchy G, Wechsler AS. Is adenosine 5′-triphosphate derangement or free-radical-mediated injury the major cause of ventricular dysfunction during reperfusion? Role of adenine nucleoside transport in myocardial reperfusion injury. Circulation 1990;82:IV341–IV350.

    PubMed  CAS  Google Scholar 

  36. Lozeman FJ, Challiss RA, Leighton B, Newsholme EA Effects of dipyridamole on adenosine concentration, insulin sensitivity and glucose utilization in soleus muscle of the rat. Pflugers Arch 1987;410:192–197.

    Article  PubMed  CAS  Google Scholar 

  37. Mullane K. Acadesine: the prototype adenosine regulating agent for reducing myocardial ischaemic injury. Cardiovasc Res 1993;27:43–47.

    Article  PubMed  CAS  Google Scholar 

  38. Mudumbi RV, Montamat SC, Bruns RF, Vestal RE. Cardiac functional responses to adenosine by PD 81,723, an allosteric enhancer of the adenosine Al receptor. Am J Physiol 1993;264:H1017–H1022.

    PubMed  CAS  Google Scholar 

  39. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  40. Wolfe CL, Sievers RE, Visseren FL, Donnelly TJ. Loss of myocardial protection after preconditioning correlates with the time course of glycogen recovery within the preconditioned segment. Circulation 1993;87:881–892.

    PubMed  CAS  Google Scholar 

  41. Cianachan AS, Lopaschuk GD, Ghandi M, Finegan BA. Ischemic preconditioning inhibits glycolysis and proton production during ischemia and reperfusion in working rat hearts [abstract]. Circulation 1994;90(part 4):I–476.

    Google Scholar 

  42. Asimakis GK, Inners McBride K, Medellin G, Conti VR. Ischemic preconditioning attenuates acidosis and postischemic dysfunction in isolated rat heart. Am J Physiol 1992;263:H887–H894.

    PubMed  CAS  Google Scholar 

  43. Steenbergen C, Perlman ME, London RE, Murphy E. Mechanism of preconditioning. Ionic alterations. Circ Res 1993;72:112–125.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Clanachan, A.S., Lopaschuk, G.D. (1996). Alterations in Energy Substrate Metabolism During Oxidative Stress. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics