Skip to main content

Physiologic and Pathophysiologic Significance of Purine Metabolism in the Heart

  • Chapter
  • 62 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 181))

Abstract

Purines are the basic building blocks of many important molecules of vital physiologic significance. The most important purine molecule is adenosine 5’-triphosphate (ATP) in which 95% of chemical energy is stored and from which energy is derived to trigger numerous energy-dependent reactions. ATP is essential for generation of the second messenger cAMP and regulation of several ATP-sensitive enzymes, channels and myocardial contraction-relaxation coupling. ATP is crucial in maintaining ionic gradients, neurotransmitter release, nerve depolarization and conduction, gene expression and nucleic and deoxynucleic acid synthesis (RNA and DNA) during myocardial development and cardiac repair. ATP and derivatives (ADP, AMP, adenosine and cAMP) are crucial for several molecular cellular events responsible for and regulation of vascular tone and contractile activity in the heart. In addition to purines, other nucleotides and nucleosides also play a significant role cellular and molecular biology. In the heart, the most abundant purine derivative is ATP and about 95% of ATP is synthesized in the mitochondria. In normal physiologic conditions, the steady state level of myocardial ATP is in a critical balance between ATP production and utilization. Mitochondrial adenine nucleotide translocase transfers ATP from the mitochondria to the cytosol in exchange for ADP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abd-Elfattah AS, Wechsler AS. Myocardial protection in Cardiac Surgery: Subcellular basis for myocardial injury and protection. Adv Card Surg 1992;3:73–112.

    Google Scholar 

  2. Jennings RB, Reimer KA, Steenbergen C: Complete global myocardial ischemia in dogs. Crit Care Med 1988;16:988–996.

    Article  PubMed  CAS  Google Scholar 

  3. Maguire MH, Lukas MC, Rettie JF: Adenine nucleotide salvage synthesis in rat heart: Pathways of adenosine salvage. Biochim Biophys Acta 1972;262:108–115.

    PubMed  CAS  Google Scholar 

  4. Vary TC, Angelakos ET, Schaffer SW: Relationship between adenine nucleotide metabolism and irreversible ischemic tissue damage in isolated perfused rat heart. Circ Res 1979; 45:218–224.

    PubMed  CAS  Google Scholar 

  5. Katz AM, Tada M: The “stone heart”: A challenge to the biochemist. Am J Cardiol 1972;29:578–580.

    Article  PubMed  CAS  Google Scholar 

  6. Chien KR, Han A, Sen A, Buja LM, Willerson JT: Accumulated of unesterified arachidonic acid in ischemic canine myocardium: Relationship to a phosphatidylcholine deacylation reacylation cycle and the depletion of membrane phospholipids: Circ Res 1984;54:312–322.

    Google Scholar 

  7. Corr PB, Gross RW, Sobel BE: Amphipathic metabolites and membrane dysfunction in ischemic myocardium. Circ Res 1984;55:135–154.

    PubMed  CAS  Google Scholar 

  8. Cavarocchi NC, England MD, Schaff HV, et al: Oxygen free radical generation during cardiopulmonary bypass: Correlation with complement activation. Circulation 1986;74(Suppl III):III.34.

    Google Scholar 

  9. Hagler HK, Buja LM: Subcellular calcium shifts in ischemia and reperfusion. In: Pathophysiology of severe ischemic myocardial injury. In Piper HM, editor, Kluwer Academic Publishers, 1990, pp 283–296.

    Chapter  Google Scholar 

  10. Battelli MG: Enzymic conversion of rat liver xanthine oxidase from dehydrogenase (D-form) to oxidase (O-form). FEBS Let 1980;113:47–51.

    Article  CAS  Google Scholar 

  11. Penny WJ: The deleterious effects of myocardial catecholamines on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Eur Heart J 1984;5:960–973.

    PubMed  CAS  Google Scholar 

  12. Nayler WG, Panagiotopoulos S, Elz JS, et al: Calcium-mediated damage during post-ischemic reperfusion. J Mol Cell Cardiol 1988;20(suppl II):41–54.

    Article  PubMed  CAS  Google Scholar 

  13. Opie LH, Coetzee WA Role of calcium ions in reperfusion arrhythmias: Relevance to pharmacological intervention. Cardiovasc Drugs Ther 1988;2:623–636.

    Article  PubMed  CAS  Google Scholar 

  14. Jennings RB, Reimer KA, Stenbergen C: Myocardial ischemia revisited:The osmolar load, membrane damage and reperfusion. J Mol Cell Cardiol 1986;18:769–780.

    Article  PubMed  CAS  Google Scholar 

  15. Deaton DW, Pasque MK, Pellom GL, Freedman BM, Frane JR, Wechsler AS: Comparative effects of calcium antagonists on ischemic contracture. Surg Forum 1982;33:297–300.

    Google Scholar 

  16. Belloni FL, Laing BC, Gerritsen ME: Effect of alkybcanthines and calcium antagonists on adenosine uptake by cultured rabbit coronary microvascular endothelium. Pharmacology 1987;35:1–15.

    Article  PubMed  CAS  Google Scholar 

  17. Borgers M: Loss of sarcolemmal integrity in ischemic myocardium. In: Pathophysiology of severe ischemic myocardial injury. Kluwar Academic Publishers, Dordrecht, 1990, pp 69–89.

    Chapter  Google Scholar 

  18. Van Belle H, Goossens F, Wynants J: Normothermic global ischemia in the isolated working rabbit heart: The effect of different drugs on functional recovery and on the release of inorganic phosphated, lactic acid, nucleosides and norepinephrine. J Mol Cell Cardiol 1989;21(Suppl II):S-142.

    Google Scholar 

  19. Frich GP, Lowenstein JM: Studies of 5′-nucleotidase in the perfused rat heart, including measurements of the enzyme in perfused skeletal muscle and liver. J Biolog Chem 1976;251:6372–6378.

    Google Scholar 

  20. Itoh R: Regulation of cytosol 5′-nucleotidase by adenylate energy charge. Biochim Biophys Acta 1981;659:31–37NTDase

    PubMed  CAS  Google Scholar 

  21. Abd-Elfattah AS, Wechsler AS: Superiority of HPLC to assay for enzymes regulating adenine nucleotidase pool intermediates metabolism: 5′-Nucleotidase, adenylate deaminase, adenosine deaminase and adenylosuccinate layase. A simple and rapid determination of adenosine. J Liquid Chromatogr 1987;10:2653–2694.

    Article  CAS  Google Scholar 

  22. Opie LH: Reperfusion injury and it’s pharmacologic modification. Circulation 1989;80:1049–1062.

    Article  PubMed  CAS  Google Scholar 

  23. Kitakaze M, Hori M, Morioka T, et al: Attenuation of ecto-5′-nucleotidase activity and adenosine release in activated human polymorphonuclear leukocytes. Circ Res 1993;73:524–533.

    PubMed  CAS  Google Scholar 

  24. Kitakaze M, Hori, Morioka T, Minamino T, et al: Alpha 1 -adrenoceptor activation mediates the infarct size limiting effect of ischemic preconditioning through augmentation of 5′- nucleotidase activity. J Clin Invest 1994;93:2197–2205.

    Article  PubMed  CAS  Google Scholar 

  25. Bünger R, Hartman DA, Mallet Rt. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Eur J Biochem 1989;180:221–221.

    Article  PubMed  Google Scholar 

  26. Kukreja RC, Hess ML: Free Radicals, Cardiovascular Dysfunction and Protection Strategies, RG Lands Company, Auston, 1994, pp. 1–108.

    Google Scholar 

  27. Braunwald E, Kloner RA The stunned myocardium: Prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–1149.

    Article  PubMed  CAS  Google Scholar 

  28. Ambrosio G, Jacobus WE, Bergman CA, Weisman HF, Becker LC: Preserved high energy phosphate metabolic reserve in globally “stunned” hearts despite reduction of basal ATP content and contractility. J Mol Cell Cardiol 1987;19:953–964.

    Article  PubMed  CAS  Google Scholar 

  29. Schaper W, Ito BR: The energetics of “stunned” myocardium. In De Jong JW, editor, Myocardial Energy Metabolism. Martinus Nighoff Publishers, 1988, pp 203–213.

    Chapter  Google Scholar 

  30. Swain JL, Sabina RL, McHale PA, Greenfield JC Jr, Holmes EW: Prolonged myocardial nucleotide depletion after brief ischemia in the open-chest dog. Am J Physiol 1982;242:H818-H826.

    PubMed  CAS  Google Scholar 

  31. Reimer KA, Hill ML, Jennings RB: Prolonged depletion of ATP and the adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 1981;13:229–239.

    Article  PubMed  CAS  Google Scholar 

  32. Murry C, Jennings R, Reimer K: Preconditioning with ischemia: A delay in lethal cell injury in ischemic myocardium. Circulation 1986;74:1124–1136.

    Article  PubMed  CAS  Google Scholar 

  33. Abd-Elfattah AS, Ding M, Wechsler AS: Intermittent aortic cross-clamping prevents cumulative ATP depletion, ventricular fibrillation and dysfunction “stunning”: Is it preconditioning? J Thorac Cardiovasc Surg, 1995. (In press)

    Google Scholar 

  34. Glower DD, Spratt JA, Newton JR, Wolf JA, Rankur JS, Swain J: Disassociation between early recovery of regional function and purine nucleotide content in postishemic myocardium in conscious dogs. Cardiovasc Res 1987;21:328–336.

    Article  PubMed  CAS  Google Scholar 

  35. Abd-Elfattah AS, Jessen ME, Wechsler AS: Nucleoside trapping during reperfusion prevents ventricular dysfunction“stunning,” in absence of adenosine: Possible separation between ischemic and reperfusion injury. J Thorac Cardiovasvc Surg 1994;108:269–278.

    CAS  Google Scholar 

  36. Hoffmeister HM, Mauser M, Schaper W: Failure of postishemic ATP repletion by adenosine to improve regional myocardial function in coronary sinus. In Glogan D, editor. Steinkopf-Verlag Darmstadt Springer-Verlag, New York, 1984, pp 148–152.

    Google Scholar 

  37. Zughaib ME, Abd-Elfattah AS, Jeroudi MO, Sun J-Z, Sekili S, Tang X-L, Bolli R: Inhibitors of adenosine deaminase and nucleoside transport attenuate myocardial “stunning” independently of coronary flow or hemodynamic effects. Circulation 1993;88[part I]:2359–2369.

    PubMed  CAS  Google Scholar 

  38. Bolli R, Zhu W-X, Hartley CJ, et al: Attenuation of dysfunction in the postischemic “stunned” myocardium by dimethylthiourea. Circulation 1987;76:458–568.

    Article  PubMed  CAS  Google Scholar 

  39. Abd-Elfattah AS, Jessen ME, Lekven J, Doherty NE III, Brunsting LA, Wechsler AS: Myocardial reperfusion injury: Role of myocardial hypoxanthine and xanthine on “freeradical-mediated reperfusion injury. Circulation 1988;78(Suppl III):224–235.

    Google Scholar 

  40. Abd-Elfattah AS, Wechsler AS: Separation between ischemic and reperfusion injury by site specific entrapment of endogenous adenosine and inosine using NBMPR and EHNA. J Card Surg 1994;9[Suppl]:387–396.

    PubMed  CAS  Google Scholar 

  41. Gulling W, Penny WJ, Lewis MJ, Middelton K, Sheridan DJ: Effect of myocardial catecholamine depletion on cellular electrophysiology and arrhythmias during ischemia and reperfusion. Cardiovasc Res 1984;18:675–682.

    Article  Google Scholar 

  42. Pogwizd SM, Corr PB: Electrophysiologic mechanisms underlying arrhythmias due to reperfusion of ischemic myocardium. Circulation 1987;76:404–426.

    Article  PubMed  CAS  Google Scholar 

  43. Hearse DJ, Tosaki A: Free radical and calcium: Simultaneous interacting triggers as determinates of vulnerability to reperfusion-induced arrhythmias in the rat heart. J Mol Cell Cardiol 1983;20:213–223.

    Article  Google Scholar 

  44. Hanan SA, Jessen MA, Tuchy GE, Abd-Elfattah AS, Wechsler AS: Effects of coronary collateral recruitment on ventricular recovery after brief coronary occlusion in dogs and swine. Surg Forum 1989;40:227–229.

    Google Scholar 

  45. Kusuoka H, Porterfield JK, Weisman HF, Weisfeldt ML, Marban E: Pathophysiology and pathogenesis of stunned myocardium: Depressed Ca activation of contraction as a consequence of reperfusion-induced cellular calcium over load in ferret hearts. J Clin Invest 1987;79:950–961.

    Article  PubMed  CAS  Google Scholar 

  46. Manning AS, Hearse DJ: Reperfusion-induced arrhythmias: Mechanisms and prevention. J Mol Cell Cardiol 1984;16:497–518.

    Article  PubMed  CAS  Google Scholar 

  47. Manning AS, Coltart DJ, Hearse DJ: Ischemia- and reperfusion-induced arrhythmias in the rat: Effects of xanthine oxidase inhibition with allopurinol. Circ Res 1984;55:545–548.

    PubMed  CAS  Google Scholar 

  48. Hearse DJ, Tosaki A: Free radical and calcium: Simultaneous interacting triggers as determinate of vulnerability to reperfusion-induced arrhythmias in the rat heart. J Mol Cell Cardiol 1983;20:213–223.

    Article  Google Scholar 

  49. Marban E, Lorestsune Y, Corretti M, Chacko WP, Kusoka H: Calcium and its role in myocardial cell injury during ischemia and reperfusion. Circulation 1989;80(Suppl IV):IV-17–IV-22.

    CAS  Google Scholar 

  50. Fitzpatrick DB, Karmazyn M: Comparative effects of calcium channel blocking agents and varying extracellular calcium concentration on hypoxia/reoxygenation and ischemia/reperfusion-induced cardiac injury. J Pharmacol Exp Ther 1984;228:761–768.

    PubMed  CAS  Google Scholar 

  51. Lo HM, Kloner RA, Braunwald E: Effect of intracoronary verapamil on infarct size in the ischemic, reperfused canine heart: Critical importance of the timing of treatment. Am J Cardiol 1985;56:672–677.

    Article  PubMed  CAS  Google Scholar 

  52. Lavie CJ, Murphy JG, Gersh BJ: The role of beta-receptor and calcium-entry-blocking agents in acute myocardial infarction in the thrombolytic era: Can the results of thrombolytic reperfusion be enhanced? Cardiovasc Drugs Ther 1988;2:601–607.

    Article  PubMed  CAS  Google Scholar 

  53. Erbel R, Pop T, Minertz T, et al: Combination of calcium channel blocker and thrombolytic therapy in acute myocardial infarction. Am Heart J 1988;115:529–538.

    Article  PubMed  CAS  Google Scholar 

  54. Nayler WG, Ferrari R, William A: Protective effect of pre-treatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am J Cardiol 1980;146:242–248.

    Article  Google Scholar 

  55. Van de Werf F, Vanhaecke J, Jang I-K, et al: Reduction in infarct size and enhancement recovery of systolic function after coronary thrombolysis with tissue-type plasminogen activator combined with B-adrenergic blockade with metoprolol. Circulation 1987;75:830–836.

    Article  PubMed  Google Scholar 

  56. Bush LR, Buja LM, Tilton G, et al: Effect of propranolol and diltiazem alone and in combination on the recovery of left ventricular segmental function after temporary coronary occlusion and long-term reperfusion in conscious dogs. Circulation 1985;72:413–430.

    Article  PubMed  CAS  Google Scholar 

  57. Yanagida S, Ohsuzu F, Sakata N, et al: Protection of ATP depletion in the perfused heart by verapamil and adenosine. Circulation 1987;76(Suppl IV):IV-244. [Abstract]

    Google Scholar 

  58. Fitzpatrick DB, Karmazyn M: Comparative effects of calcium channel blocking agents and varying extracellular calcium concentration on hypoxia/reoxygenation and ischemia/reperfusion-induced cardiac injury. J Pharmacol Exp Ther 1984;228:761–768.

    PubMed  CAS  Google Scholar 

  59. Lavie CJ, Murphy JG, Gersh BJ: The role of beta-receptor and calcium-entry-blocking agents in acute myocardial infarction in the thrombolytic era: Can the results of thrombolytic reperfusion be enhanced? Cardiovasc Drugs Ther 1988;2:601–607.

    Article  PubMed  CAS  Google Scholar 

  60. Erbel R, Pop T, Minertz T, et al: Combination of calcium channel blocker and thrombolytic therapy in acute myocardial infarction. Am Heart J 1988;115:529–538.

    Article  PubMed  CAS  Google Scholar 

  61. Bulkely GB: Free radical-mediated reperfusion injury: A selective review. Br J Cancer 1987;55(Suppl I):66–73.

    Google Scholar 

  62. Schaper W, Schaper J: Problems associated with reperfusion of ischemic myocardium. In: Pipers HM, editor. Pathophysiology of Severe Ischemic Myocardial Injury. Kluwar Academic Publishers, Boston, MA, 1990, pp 269–280.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Abd-Elfattah, AS.A., Guo, JH., El-Guessab, EM., Wechsler, A.S. (1996). Physiologic and Pathophysiologic Significance of Purine Metabolism in the Heart. In: Abd-Elfattah, AS.A., Wechsler, A.S. (eds) Purines and Myocardial Protection. Developments in Cardiovascular Medicine, vol 181. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0455-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0455-5_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8056-6

  • Online ISBN: 978-1-4613-0455-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics