Skip to main content

Abstract

Flight is the characteristic adaptation of birds. The energetic cost of moving a unit of weight a unit distance in air (the dimensionless cost of transport) is rather low. For a given body mass, flying is a far more inexpensive way to move than is running, although it is more expensive than swimming (Schmidt-Nielsen 1984). But, despite the low cost of transport, flying requires a high rate of energy expenditure per unit time, and, therefore, flight is one of the most demanding adaptations found in nature. Four animal groups have evolved flapping flight—insects, pterosaurs, birds, and bats—all of which show advanced morphological and physiological specializations associated with aerial locomotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baudinette, R. V and K. Schmidt-Nielsen. 1974. Energy cost of gliding flight in Herring Gulls. Nature (London) 248:83–84.

    Google Scholar 

  • Bennett, P. M. and P. H. Harvey. 1987. Active and resting metabolism in birds; allometry, phylogeny and ecology. J. Zool. 213:327–363.

    Google Scholar 

  • Berger, M. and J. S. Hart. 1972. Die Atmung beim Kolibri Amazilia fimbriata während des Schwirrfluges bei verschiedenen Umgebungstemperaturen. J. Comp. Physiol. 81:363–380.

    Google Scholar 

  • Berger, M. and J. S. Hart. 1974. Physiology and energetics of flight. In Avian Biology, vol. 4, eds. D. S. Farner and J. R. King, pp. 415–477. Academic Press, London New York.

    Google Scholar 

  • Berger, M., O. Z. Roy, and J. S. Hart. 1970. The co-ordination between respiration and wing beats in birds. Z Vergl. Physiol 66:201–214.

    Google Scholar 

  • Bernstein, M. H., S. P. Thomas, and K. Schmidt-Nielson. 1973. Power input during flight of the fish crow, Corvus ossifragus. J. Exp. Biol 58:401–410.

    Google Scholar 

  • Betz, A. 1963. Applied airfoil theory. In Aerodynamic Theory, vol. 4, ed. W. F. Durand, pp. 1–129. Dover, New York.

    Google Scholar 

  • Biesel, W. and W. Nachtigall. 1987. Pigeon flight in a wind tunnel. IV Thermoregulation and water homeostasis. J Comp. Physiol. 157:117–128.

    Google Scholar 

  • Blem, C. R. 1990. Avian energy storage. In Current Ornithology, ed. D. M. Power, pp. 59–113. Plenum Press, New York.

    Google Scholar 

  • Butler, P. J. 1985. New techniques for studying respiration in free flying birds. In Acta XVIII Congressus Ornithologici, Moscow, eds. V D. Illyichev and V M. Gavrilow, pp. 995–1004. Nauka Press, Moscow.

    Google Scholar 

  • Butler, P. J., N. H. West, and D. R. Jones. 1977. Respiratory and cardiovascular responses of the pigeon to sustained, level flight in a wind tunnel. J. Exp. Biol 71:7–26.

    Google Scholar 

  • Csicsáky, M. 1977. Aerodynamische und ballistische Untersuchungen an Kleinvögeln. Ph.D. diss., University of Hamburg.

    Google Scholar 

  • Collins, B. G. and P. C. Morellini. 1979. The influence of nectar concentration and time of day upon energy intake and expenditure by Singing Honeyeater, Meliphaga virescens. Physiol Zool. 52:165–175.

    Google Scholar 

  • Cone, C. D. 1962. Thermal soaring of birds. Amer. Sci. 50:180–209.

    Google Scholar 

  • Costa, D. P. and P. A. Prince. 1987. Foraging energetics of grey-headed albatrosses Diomedea chrysostoma at Bird Island, South Georgia. Ibis 129:149–158.

    Google Scholar 

  • Dolnik, V R. and T. I. Blyumental. 1967. Autumnal premigratory and migratory periods in the chaffinch (Fringilla coelebs coelebs) and some other temperate-zone passerine birds. Condor 69:435–468.

    Google Scholar 

  • Dolnik, V R. and V M. Gavrilov. 1973. Energy metabolism during flight of some passerines. In Bird Migrations: Ecological and Physiological Factors, ed. B. E. Byikhovskii, pp. 288–296. John Wiley, New York.

    Google Scholar 

  • Ellington, C. P. 1984a. The aerodynamics of hovering insect flight. II. Morphological parameters. Phil Trans. R. Soc. Lond. B 305:17–40.

    Google Scholar 

  • Ellington, C. P. 1984b. The aerodynamics of hovering insect flight. IV Aerodynamic mechanisms. Phil. Trans. R. Soc. Lond. B 305:79–113.

    Google Scholar 

  • Flint, E. N. and K. A. Nagy. 1984. Flight energetics of free living Sooty Terns. Auk 101:288–294.

    Google Scholar 

  • Gessaman, J. A. 1980. An evaluation of heart rate as an indirekt measure of daily energy metabolism of the American Kestrel. Comp. Biochem. Physiol. 65A:273–289.

    Google Scholar 

  • Gessaman, J. A. and K. A. Nagy. 1988. Transmitter loads affect the flight speed and metabolism of homing pigeons. Condor 90:662–668.

    Google Scholar 

  • Greenewalt, C. H. 1962. Dimensional relationships for flying animals. Smiths. Misc. Collns 144:1–46.

    Google Scholar 

  • Greenewalt, C. H. 1975. The flight of birds. Trans. Am. Phil. Soc. 65:1–67.

    Google Scholar 

  • Hails, C. J. 1979. A comparison of flight energetics in hirundines and other birds. Comp. Biochem. Physiol. 63A:581–585.

    Google Scholar 

  • Hart, J. S. and M. Berger. 1972. Energetics, water economy and temperature regulation during flight. In Acta XV Congressus Internationalis Ornithologici, ed. K. H. Voous, pp. 189–199. E. J. Brill, Leiden, The Netherlands.

    Google Scholar 

  • Heglund, N. C., M. A. Fedak, C. R. Taylor, and G. A. Cavagna. 1982. Energetics and me-chanics of terrestrial locomotion. IV Total mechanical energy changes as a function of speed and body size in birds and mammals. J. Exp. Biol. 97:57–66.

    CAS  Google Scholar 

  • Heppner, F. H. 1974. Avian flight formations. Bird-Banding 45:160–169.

    Google Scholar 

  • Higdon, J. J. L. and S. Corrsin. 1978. Induced drag of a bird flock. Am. Nat. 112:727–744.

    Google Scholar 

  • Hill, A. V 1950. The dimensions of animals and their muscular dynamics. Sci. Prog. Lond. 38:209–230.

    Google Scholar 

  • Hudson, D. M. and M. H. Bernstein. 1983. Gas exchange and energy cost of flight in the white-necked raven, Corvus cryptoleucus. J. Exp. Biol. 103:121–130.

    PubMed  CAS  Google Scholar 

  • Hussell, D. J. T. 1969. Weight loss of birds during nocturnal migration. Auk 86:75–83.

    Google Scholar 

  • Johnston, D. W. and R. W. McFarlane. 1967. Migration and bio-energetics of flight in the Pacific golden plover. Condor 69:156–168.

    Google Scholar 

  • Kersten, M. and T. Piersma. 1987. High levels of energy expenditure in shorebirds; metabolic adaptations to an energetically expensive way of life. Ardea 75:175–187.

    Google Scholar 

  • Kespaik, J. 1968. Heat production and heat loss of swallows and martins during flight. Eisti. Nsv. teaduste. Akadeemia toimetised XVII kaoide Biol. 2:179–190.

    Google Scholar 

  • Kirkpatrick, S. 1990. The moment of inertia of bird wings, J. Exp. Biol. 151:489–494.

    Google Scholar 

  • Lasiewski, R. C. 1963. Oxygen consumption of torpid, resting, active, and flying hummingbirds. Physiol Zool. 36:122–140.

    CAS  Google Scholar 

  • Lasiewski, R. C. and W. R. Dawson. 1967. A re-examination of the relation between standard metabolic rate and body weight in birds. Condor 69:13–23.

    Google Scholar 

  • LeFebvre, E. A. 1964. The use of D2O18 for measuring energy metabolism in Columba livia at rest and in flight. Auk 81:403–416.

    Google Scholar 

  • Lifson, M., G. B. Gordon, N. B. Visscher, and A. O. Nier. 1949. The fate of utilized molecular oxygen of respiratory CO2, studied with the aid of heavy oxygen. J. Biol Chemistry 180:803–811.

    CAS  Google Scholar 

  • Lifson, M. and R. M. McClintock. 1966. Theory and use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12:46–74.

    PubMed  CAS  Google Scholar 

  • Lighthill, M. J. 1977. Introduction to the scaling of aerial locomotion. In Scale Effects in Animal Locomotion, ed. T. J. Pedley, pp. 365–404. Academic Press, London.

    Google Scholar 

  • Lissaman, P. B. S. and C. A. Shollenberger. 1970. Formation flight of birds. Science 168:1003–1005.

    PubMed  CAS  Google Scholar 

  • Lyuleeva, D. S. 1970. Energy of flight in swallows and swifts. Dokl. Akad. Nauk. SSR 190:1467–1469.

    Google Scholar 

  • Margaria, R. 1968. Positive and negative work performances and their efficiencies in human locomotion. Int. Z. angew. Physiol, einschl. Arbeitsphysiol. 25:339–351.

    CAS  Google Scholar 

  • Masman, D. 1986. The annual cycle of the kestrel Falco tinnunculus. A study in behavioural energetics. Ph.D. diss., University of Groningen.

    Google Scholar 

  • Masman, D. and M. Klaassen. 1987. Energy expenditure during free flight in trained and free-living Eurasian kestrels (Falco tinnunculus). Auk 104:603–616.

    Google Scholar 

  • Mises, R. von. 1959. Theory of Flight. Dover Publications, New York. First published 1945.

    Google Scholar 

  • Moreau, R. E. 1961. Problems of Mediterranean-Saharan migration. Ibis 103a:373–427, 580–623.

    Google Scholar 

  • Nagy, K. A. 1975. Water and energy budgets of free-living animals: measurement using isotopically labelled water. In Environmental Physiology of Desert Organisms, ed. N. F. Hadley, pp. 227–245. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania.

    Google Scholar 

  • Nagy, K. A. 1980. CO2 production in animals: analysis of potential errors in the doubly labeled water method. Am. J. Physiology 238:R466–R473.

    CAS  Google Scholar 

  • Nagy, K. A. 1989. Doubly-labeled water studies of vertebrate physiological ecology. In Stable Isotopes in Ecological Research, eds. P. W. Rundel, J. R. Ehrlinger and K. A. Nagy, pp. 270–287. Springer-Verlag, New York.

    Google Scholar 

  • Nisbet, I. C. T. 1963. Weight loss during migration. II: A review of other estimates. Bird-Banding 34:139–159.

    Google Scholar 

  • Nisbet, I. C. T., W. H. Drury, and J. Baird. 1963. Weight loss during migration. I. Deposition and consumption of fat by the blackpoll warbler Dendroica striata. Bird-Banding 34:107–138.

    Google Scholar 

  • Norberg, R. Ă…. 1977. An ecological theory on foraging time and energetics and choice of optimal food-searching method. J. Anim. Ecol. 46:511–529.

    Google Scholar 

  • Norberg, R. Ă…. 1981a. Why foraging birds in trees should climb and hop upwards rather than downwards. Ibis 123:281–288.

    Google Scholar 

  • Norberg, R. Ă…. 1981b. Optimal flight speed in birds when feeding young. J. Anim. Ecol. 50:473–477.

    Google Scholar 

  • Norberg, R.Ă…. 1983. Optimum locomotion modes for birds foraging in trees. Ibis 125:172–180.

    Google Scholar 

  • Norberg R. Ă…. 1985. Function of vane asymmetry and shaft curvature in bird flight feathers; inference on flight ability of Archaeopteryx. In The Beginnings of Birds, eds. M. K. Hecht, J. H. Ostrom, G. Viohl, and P. Wellnhofer, Proc. Int. Archaeopteryx Conf. Eichstatt 1984, pp. 303–318. Freunde des Jura-Museums Eichstätt, Willibaldsburg.

    Google Scholar 

  • Norberg, R. Ă…. and U. M. Norberg. 1971. Take-off, landing, and flight speed during fishing flights of Gavia stellata (Pont.). Ornis Scand. 2:55–67.

    Google Scholar 

  • Norberg, U. M. 1975. Hovering flight of the pied flycatcher (Ficedula hypoleuca). In Swimming and Flying in Nature, vol. 2, eds. T. Y. Wu, C. J. Brokaw, and C. Brennen, pp. 869–881. Plenum Press, New York.

    Google Scholar 

  • Norberg, U. M. 1976. Aerodynamics, kinematics, and energetics of horizontal flapping flight in the long-eared bat Plecotus auritus. J. Exp. Biol. 65:179–212.

    PubMed  CAS  Google Scholar 

  • Norberg, U. M. 1981. Allometry of bat wings and legs and comparison with bird wings. Phil Trans. R. Soc. Lond. B 292:359–298.

    Google Scholar 

  • Norberg, U. M. 1985a. Flying, gliding, and soaring. In Functional Vertebrate Morphology, eds. M. Hildebrand, D. M. Bramble, K. F. Liem, and D. B. Wake, pp. 129–158, refs. pp. 391–392. Harvard University Press, Cambridge Massachusetts.

    Google Scholar 

  • Norberg, U. M. 1985b. Evolution of vertebrate flight: an aerodynamic model for the transition from gliding to flapping flight. Am. Nat. 126:303–327.

    Google Scholar 

  • Norberg, U. M. 1985c. Evolution of flight in birds: aerodynamic, mechanical and ecological aspects. In The Beginnings of Birds, eds. M. K. Hecht, J. H. Ostrom, G. Viohl, and P. Wellnhofer, Proc. Int. Archaeopteryx Conf. Eichstatt 1984, pp. 293–302. Freunde des Jura-Museums Eichstätt, Willibaldsburg.

    Google Scholar 

  • Norberg, U. M. 1987. Wing form and flight mode in bats. In Recent Advances in the Study of Bats, eds. M. B. Fenton, P. A. Racey, J. M. V Rayner, pp. 43–56. University Press, Cambridge, U.K.

    Google Scholar 

  • Norberg, U. M. 1990. Vertebrate Flight. Springer, Berlin.

    Google Scholar 

  • Norberg, U. M. 1995a. How a long tail and changes in mass and wing shape affect the cost for flight in animals. Functional Ecol. 9:48–54.

    Google Scholar 

  • Norberg, U. M. 1995b. Wing design and migratory flight. Israel J. Zool. 41:297–305.

    Google Scholar 

  • Norberg, U. M. and R. Ă…. Norberg. 1988. Ecomorphology of flight and tree-trunk climbing in birds. In Acta XIX Congressus Internationalis Ornithologici, ed. H. Ouellet, pp. 2271–2282. University of Ottawa Press, Ottawa.

    Google Scholar 

  • Norberg, U. M. and J. M. V Rayner. 1987. Ecological morphology and flight in bats (Mam-malia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Phil Trans. R. Soc. Lond. B 316:335–427.

    Google Scholar 

  • Norberg, U. M., T. H. Kunz, J. F. Steffensen, Y. Winter, and O. von Helversen. 1993. The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, esti-mated from aerodynamic theory. J. Exp. Biol 182:207–227.

    PubMed  CAS  Google Scholar 

  • Osborne, M. F. M. 1951. Aerodynamics of flapping flight with application to insects. J. Exp. Biol. 28:221–245.

    PubMed  CAS  Google Scholar 

  • Pearson, O. P. 1964. Metabolism and heat loss during flight in pigeons. Condor 66:182–185.

    Google Scholar 

  • Pennycuick, C. J. 1968. Power requirements for horizontal flight in the pigeon. J. Exp. Biol. 49:527–555.

    Google Scholar 

  • Pennycuick, C. J. 1969. The mechanics of bird migration. Ibis 111:525–556.

    Google Scholar 

  • Pennycuick, C. J. 1972a. Animal Flight. Edward Arnold, London.

    Google Scholar 

  • Pennycuick, C. J. 1972b. Soaring behaviour and performance of some East African birds, observed from a motor-glider. Ibis 114:178–218.

    Google Scholar 

  • Pennycuick, C. J. 1975. Mechanics of flight. In Avian Biology, vol. V, eds. D. S. Farner and J. R. King, pp. 1–75. Academic Press, New York.

    Google Scholar 

  • Pennycuick, C. J. 1982. The flight of petrels and albatrosses (Procellariiformes), observed in South Georgia and its vicinity. Phil Trans. Roy. Soc. Lond. B 300:75–106.

    Google Scholar 

  • Pennycuick, C. J. 1986. Mechanical constraints on the evolution of flight. In The Origin of Birds and the Evolution of Flight, ed. K. Padian, pp. 83–98. California Academy of Science, San Francisco.

    Google Scholar 

  • Pennycuick, C. J. 1989. Bird Flight Performance: A Practical Calculation Manual. Oxford University Press, Oxford.

    Google Scholar 

  • Pennycuick, C. J. 1990. Predicting wingbeat frequency and wavelength of birds. J. Exp. Biol. 150:171–185.

    Google Scholar 

  • Pennycuick, C. J. and A. Lock. 1976. Elastic energy storage in primary feather shafts. J. Exp. Biol. 64:677–689.

    PubMed  CAS  Google Scholar 

  • Pennycuick, C. J., H. H. Obrecht III, and M. R. Fuller. 1988. Empirical estimates of body drag of large waterfowl and raptors. J. Exp. Biol. 135:253–264.

    Google Scholar 

  • Pennycuick, C. J., C. E. Heine, S. J. Kirkpatrick, and M. R. Fuller. 1992. The profile drag of a hawk’s wing, measured by wake sampling in a wind tunnel. J. Exp. Biol. 165:1–19.

    Google Scholar 

  • Pyke, G. H. 1981. Why hummingbirds hover and honeyeaters perch. Anim. Behav. 29:861–867.

    Google Scholar 

  • Raveling, D. G. and E. A. LeFebvre. 1967. Energy metabolism and theoretical flight range of birds. Bird-banding 38:97–113.

    Google Scholar 

  • Rayner, J. M. V 1977. The intermittent flight of birds. In Scale Effects in Animal Locomotion, ed. T. J. Pedley, pp. 437–443. Academic Press, London, New York.

    Google Scholar 

  • Rayner, J. M. V 1979a. A vortex theory of animal flight. I. The vortex wake of a hovering animal. J. Fluid Mech. 91:697–730.

    Google Scholar 

  • Rayner, J. M. V 1979b. A vortex theory of animal flight. II. The forward flight of birds. J. Fluid Mech. 91:731–763.

    Google Scholar 

  • Rayner, J. M. V 1979c. A new approach to animal flight mechanics. J. Exp. Biol. 80:17–54.

    Google Scholar 

  • Rayner, J. M. V 1985. Bounding and undulating flight in birds. J. Theor. Biol. 117:47–77.

    Google Scholar 

  • Rayner, J. M. V 1988. Form and function in avian flight. In Current Ornithology, vol. 5, ed. R. F. Johnston, pp. 1–66. Plenum Press, New York, London.

    Google Scholar 

  • Rayner, J. M. V 1990. The mechanics of flight and bird migration performance. In Bird Migration, ed. E. Gwinner, pp. 283–299. Springer, Berlin Heidelberg.

    Google Scholar 

  • Rothe, H. J. and W. Nachtigall. 1980. Physiological and energetic adaptations of flying birds, measured by the wind tunnel technique. A survey. In Acta XVII Congressus International Ornithologici, Berlin, ed. R. von Nöhring, pp. 400–405. Verlag der Deutschen Ornithologen-Gesellschaft, Berlin.

    Google Scholar 

  • Rothe, H. J., W. Biesel, and W. Nachtigall. 1987. Pigeon flight in a wind tunnel. II. Gas exchange and power requirements. J. Comp. Physiol. B 157:99–109.

    Google Scholar 

  • Schmidt-Nielsen, K. 1984. Scaling: Why is Animal Size so Important? University Press, Cambridge.

    Google Scholar 

  • Smith, N. G., D. L. Goldstein, and G. A. Bartholomew. 1986. Is long-distance migration possible for soaring hawks using only stored fat? Auk 103:607–611.

    Google Scholar 

  • Speakman, J. R. and P. A. Racey. 1988. The doubly-labelled water technique for measurement of energy expenditure in free-living animals. Sci. Prog. Oxford 72:227–237.

    CAS  Google Scholar 

  • Spedding, G. R. 1987. The wake of a kestrel (Falco tinnunculus) in gliding flight. J. Exp. Biol. 127:45–57.

    Google Scholar 

  • Spedding, G. R. 1992. The aerodynamics of flight. In Advances in Comparative and Environmental Physiology, vol. II: Mechanics of Animal Locomotion, ed. R. McN. Alexander, pp. 51–111. Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Tatner, R and D. M. Bryant. 1986. Flight cost of a small passerine measured using doubly labeled water: implications for energetics studies. Auk 103:169–180.

    Google Scholar 

  • Teal, J. M. 1969. Direct measurement of C02 production during flight in small birds. Zoologica 54:17–23.

    CAS  Google Scholar 

  • Thollesson, M. and U. M. Norberg. 1991. Moments of inertia of bat wings and body. J. Exp. Biol. 158:19–35.

    Google Scholar 

  • Torre-Bueno, J. R. and J. Larochelle. 1978. The metabolic cost of flight in unrestrained birds. J. Exp. Biol. 75:223–229.

    PubMed  CAS  Google Scholar 

  • Tucker, V A. 1966. Oxygen consumption of a flying bird. Science 154:150–151.

    PubMed  CAS  Google Scholar 

  • Tucker, V A. 1968. Respiratory exchange and evaporative water loss in the flying budgerigar. J. Exp. Biol. 48:67–87.

    Google Scholar 

  • Tucker, V A. 1972. Metabolism during flight in the laughing gull, Larus atricilla. Am. J. Physiol. 222:237–245.

    PubMed  CAS  Google Scholar 

  • Tucker, V A. 1973. Bird metabolism during flight: evaluation of a theory. J. Exp. Biol. 58:689–709.

    Google Scholar 

  • Tucker, V A. and C. Heine. 1990. Aerodynamics of gliding flight in a Harris’ hawk, Parabuteo unicinctus. J. Exp. Biol. 149:469–489.

    Google Scholar 

  • Tucker, V A. and G. C. Parrott, 1970. Aerodynamics of gliding flight in a falcon and other birds. J. Exp. Biol. 52:345–367.

    Google Scholar 

  • Turner, A. K. 1982a. Timing of laying by the Swallows (Hirundo rustica) and Sand Martins (Riparia riparia). J. Anim. Ecol. 51:29–46.

    Google Scholar 

  • Turner, A. K. 1982b. Optimal foraging by the Swallow (Hirundo rustica): prey size selection. Anim. Behav. 30:862–872.

    Google Scholar 

  • Utter, J. M. and E. A. LeFebvre. 1970. Energy expenditure for free flight by the Purple Martin (Progne subis). Comp. Biochem. Physiol. 35:713–719.

    Google Scholar 

  • Weis-Fogh, T. 1972. Energetics of hovering flight in hummingbirds and in Drosophila. J. Exp. Biol. 56:79–104.

    Google Scholar 

  • Weis-Fogh, T. 1973. Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Exp. Biol 59:169–230.

    Google Scholar 

  • Wells, D. J. 1993. Muscle performance in hovering hummingbirds. J. Exp. Biol 178:39–57.

    Google Scholar 

  • Westerterp, K. R. and D. M. Bryant. 1984. Energetics of free existance in swallows and martins (Hirundinidae) during breeding: a comparative study using doubly labeled water. Oecologia 62:376–381.

    Google Scholar 

  • Westerterp, K. R. and R. H. Drent. 1985. Flight energetics of the starling (Sturnus vulgaris) during the parental period. In Acta XVIII Congressus Omithologici, ed. V. D. Illyichev and V. M. Gavrilow, pp. 392–398. Nauka Press, Moscow.

    Google Scholar 

  • Withers, R C. and R L. Timko. 1977. The significance of ground effect to the aerodynamic cost of flight and energetics of the black skimmer (Rhyncops nigra). J. Exp. Biol. 70:13–26.

    Google Scholar 

  • Wolf, L. L. and R R. Hainsworth. 1983. Economics of foraging strategies in sunbirds and hummingbirds. In Behavioral Energetics: The Cost of Survival in Vertebrates, eds. W. P. Aspey and S. I. Lustick, pp. 223–264. Ohio State University Press, Columbus, Ohio.

    Google Scholar 

  • Wolf, L. L., R R. Hainsworth, and R B. Gill. 1975. Foraging efficiencies and time budgets in nectar feeding birds. Ecology 56:117–128.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Norberg, U.M. (1996). Energetics of Flight. In: Carey, C. (eds) Avian Energetics and Nutritional Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0425-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0425-8_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8046-7

  • Online ISBN: 978-1-4613-0425-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics