Skip to main content

Abstract

Avian incubation, the process by which birds apply heat to their eggs, has stimulated the thinking of students of ornithology for decades. Early interest included studies on the proper conditions for embryological development of domestic fowl eggs (Gallus gallus), the incubation schedule of wild birds, and the measurement of egg temperature during natural incubation (Huggins 1941; Kendeigh 1952; Baerends 1959; Skutch 1962; Lundy 1969). More recent efforts have explored physiological aspects of the process of incubation for both parents and eggs (Drent 1972; 1973; 1975). Sparked by a debate between Kendeigh (1963) and King (1973) over whether incubation required augmentation of adult metabolism, interest in parental energy expenditure during incubation has gained momentum in the last two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, N. J. and C. R. Brown. 1984. Metabolic rates of sub-Antarctic Procellariiformes: a comparative study. Comp. Biochem. Physiol. 77A: 169–173.

    Google Scholar 

  • Adams, N. J., R. W. Abrams, W. R. Siegfried, K. A. Nagy and I. R. Kaplan. 1991. Energy expenditure and food consumption by breeding Cape Gannets Morus capensis. Mar. Ecol. Prog. Ser. 70:1–9.

    Google Scholar 

  • Afton, A. D. and S. L. Paulus. 1992. Incubation and brood care in waterfowl. In The Ecology and Management of Breeding Waterfowl, eds. B. J. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, and G. L. Krapu, pp. 62–108. University of Minnesota Press, St. Paul, Minnesota.

    Google Scholar 

  • Altangerel, P., M. A. Norell, L. M. Chiappe, and J. M. Clark. 1993. Flightless bird from the cretaceous of Mongolia. Nature 362:623–626.

    Google Scholar 

  • Arcese, P. and J. M. Smith. 1985. Phenotypic correlates and ecological consequences of dominance in Song Sparrows. J. Anim. Ecol. 54:817–830.

    Google Scholar 

  • Aschoff, J. and H. Pohl. 1970. Rhythmic variations in energy metabolism. Fed. Proc. 29:1541–1552.

    PubMed  CAS  Google Scholar 

  • Baerends, G. P. 1959. The ethological analysis of incubation behavior. Ibis 101:357–369.

    Google Scholar 

  • Bellairs, A. 1969. The Life of Reptiles, vol. II. Weidenfeld and Nicolson, London.

    Google Scholar 

  • Bennett, A. F. and W. R. Dawson. 1979. Physiological responses of embryonic Heermann’s Gulls to temperature. Physiol. Zool. 52:413–421.

    Google Scholar 

  • Bennett, A. F., W. R. Dawson, and R. W. Putnam. 1981. Thermal environment and tolerance of embryonic Western Gulls. Physiol. Zool. 54:146–154.

    Google Scholar 

  • Biebach, H. 1979. Energetik des Brutens beim Star (Sturnus vugaris). J. Omithol. 120:121–138.

    Google Scholar 

  • Biebach, H. 1981. Energetic costs of incubation on different clutch sizes in Starlings (Sturnus vulgaris). Ardea 69:141–142.

    Google Scholar 

  • Biebach, H. 1986. Energetics of rewarming a clutch in starlings (Sturnus vulgaris). Physiol. Zool. 59:69–75.

    Google Scholar 

  • Birt-Friesen, V L., W. A. Montevecchi, D. K. Cairns, and S. A. Macko. 1989. Activity-specific metabolic rates of free-living northern gannets and other seabirds. Ecology 70:357–367.

    Google Scholar 

  • Booth, D. T. 1987. Effect of temperature on development of Mallee Fowl Leipoa ocellata eggs. Physiol. Zool. 60:437–445.

    Google Scholar 

  • Breitenbach, R. P. and R. K. Meyer. 1959. Effect of incubation on brooding and fat, visceral weights and body weight of hen pheasant (Phasianus colchicus). Poultr. Sci. 38:1014–1026.

    Google Scholar 

  • Brown, C. R. 1988. Energy expenditure during incubation in four species of sub-Antarctic burrowing petrels. Ostrich 59:67–70.

    Google Scholar 

  • Brown, B. and E. M. Schlaikjer. 1940. The structure and relationships of Protoceratops. Ann. N. Y.Acad. Sci. 40:133–265.

    Google Scholar 

  • Brummerman, M. and R. Reinertsen. 1991. Adaptation of homeostatic thermoregulation: comparison of incubating and non-incubating Bantam hens. J. Comp. Physiol. B161:133–140.

    Google Scholar 

  • Bryant, D. M. 1979. Reproductive costs in the House Martin (Delichon urbica). J. Anim. Ecol. 48:655–675.

    Google Scholar 

  • Bryant, D. M. and P. Tatner. 1988. Energetics of the annual cycle of Dippers Circulus circulus. Ibis 130:17–38.

    Google Scholar 

  • Bryant, D. M. and K. R. Westerterp. 1980. The energy budget of the House Martin (Delichon urbica). Ardea 68:91–102.

    Google Scholar 

  • Burger, A. and A. J. Williams. 1979. Egg temperatures of the Rockhopper Penguin and some other penguins. Auk 96:100–105.

    Google Scholar 

  • Buttemer, W. A. and T. J. Dawson. 1989. Body temperature, water flux and estimated energy expenditure of incubating Emus (Dromaius novaehollandiae). Comp. Biochem. Physiol. 94A:21–24.

    Google Scholar 

  • Calder, W. A. 1964. Gaseous metabolism and water relations of the Zebra Finch, Taeniopygia castanotis. Physiol Zool. 37:400–413.

    Google Scholar 

  • Calder, W. A. and J. Booser. 1973. Hypothermia of Broad-tailed Hummingbirds during incubation in nature with ecological correlations. Science 180:751–753.

    PubMed  CAS  Google Scholar 

  • Carey, C. 1980. The ecology of avian incubation. Bioscience 30:819–824.

    Google Scholar 

  • Clark, A. B. and D. S. Wilson. 1981. Avian breeding adaptations: hatching asynchrony, brood reduction and nest failure. Quart. Rev. Biol. 56:254–277.

    Google Scholar 

  • Colbert, E. H. 1965. The Age of Reptiles. Weidenfeld andNicolson, New York.

    Google Scholar 

  • Costa, D. R., R Daan, and W. Disher. 1986. Energy requirements of free-ranging Little Penguin, Eudyptula minor. Comp. Biochem. Physiol. 85A: 135–138.

    Google Scholar 

  • Croxall, J. P. 1982. Energy costs of incubation and moult in petrels and penguins. J. Anim. Ecol. 51:177–194.

    Google Scholar 

  • Croxall, J. P. and C. Ricketts. 1983. Energy costs of incubation in the Wandering Albatross Diomedea exulans. Ibis 125:33–39.

    Google Scholar 

  • Croxall, J. P., C. Ricketts, and P. A. Prince. 1984. Impact of seabirds on marine resources, especially krill, of South Georgia waters. In Seabird Energetics, eds. C. Whittow and H. Rahn. pp. 285–315. Plenum Press, New York.

    Google Scholar 

  • Daan, S., D. Masman, and A. Groenewald. 1990. Avian basal metabolic rates: their association with body composition and energy expenditure in nature. Am. J. Physiol. 259:R333–R340.

    PubMed  CAS  Google Scholar 

  • Davis, R. W., J. P. Croxall, and M. J. O’Connell. 1989. The reproductive energetics of Gen- too (Pygoscelis papua) and Macaroni (Eudyptes chrysolophus) Penguins at South Georgia. J. Anim. Ecol. 58:59–74.

    Google Scholar 

  • Davis, S. D., J. B. Williams, W. J. Adams, and S. L. Brown. 1984. The effect of egg temperature on attentiveness in the Belding’s Savannah sparrow. Auk 101:556–566.

    Google Scholar 

  • Dawson, W. R. 1984. Metabolic responses of embryonic seabirds to temperature. In Seabird Energetics, ed. G. C. Whittow and H. Rahn, pp. 139–157. Plenum Press, New York.

    Google Scholar 

  • DeSteven, D. 1980. Clutch size, breeding success and parental survival in the Tree Swallow (Iridoprocne bicolor). Evolution 34:278–291.

    Google Scholar 

  • Dowsett-Lemaire, F. and P. Collette. 1980. Weight variations of adult Marsh Warblers (Acrocephalus palustris) during the breeding cycle. Vogelwarte 30:209–214.

    Google Scholar 

  • Drent, R. H. 1972. Adaptive aspects of the physiology of incubation. In Proceedings XV International Ornithological Congress, ed. K. H. Voous, pp. 255–280. E. J. Brill, Leiden, Netherlands.

    Google Scholar 

  • Drent, R. H. 1973. The natural history of incubation. In Breeding Biology of Birds, ed. D. S. Farner, pp. 262–320. National Academy of Science, Washington, DC.

    Google Scholar 

  • Drent, R. H. 1975. Incubation. In Avian Biology, ed. D. S. Farner and J. R. King, pp. 333–420. Academic Press, New York.

    Google Scholar 

  • Drent, R. H. and S. Daan. 1980. The prudent parent: energetic adjustments in avian breeding. Ardea 68:225–252.

    Google Scholar 

  • Drent, R. H., J. M. Tinbergen, and H. Biebach. 1985. Incubation in the Starling, Sturnus vulgaris: Resolution of conflict between egg care and foraging. Netherlands J. Zool. 35:103–123.

    Google Scholar 

  • Ellis, H. I. 1984. Energetics of free-ranging seabirds. In Seabird Energetics, eds. G. C. Whittow and H. Rahn, pp. 203–234. Plenum Press, New York.

    Google Scholar 

  • El-Wailly, A. J. 1966. Energy requirements for egg laying and incubation in the Zebra Finch, Taeniopygia castanotis. Condor 68:582–594.

    Google Scholar 

  • Evans, R. M. 1989. Egg temperatures and parental behavior during the transition from incubation to brooding in the American White Pelican. Auk 106:26–33.

    Google Scholar 

  • Feduccia, A. 1980. The Age of Birds. Harvard University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Flint, E. N. and K. A. Nagy. 1984. Flight energetics of free-living Sooty Terns. Auk 101:288–294.

    Google Scholar 

  • Fogden, M. P. L. and P. M. Fogden. 1979. The role of fat and protein reserves in the annual cycle of the Grey-backed Camaroptera in Uganda (Aves: Sylvidae). J. Zool Lond. 189:233–258.

    Google Scholar 

  • Freed, L. A. 1981. Loss of mass in breeding wrens: stress or adaptation? Ecology 62: 1179–1186.

    Google Scholar 

  • Frith, H. J. 1956. Temperature regulation in the nesting mounds of the Mallee-fowl Leipoa ocellata Gould. Common. Sci. Indust. Res. Organ. Wildl. Res. 1:79–95.

    Google Scholar 

  • Frith, H. J. 1962. The Mallee-fowl. The Bird that Builds an Incubator. Argus and Robertson, Sydney.

    Google Scholar 

  • Funk, E. and H. Biellier. 1944. The minimum temperature for embryonic development in the domestic fowl (Gallus domesticus). Poultr. Sci. 23:538–540.

    Google Scholar 

  • Gabrielson, G. W. and S. Unander. 1987. Energy costs during incubation in Svalbard and Willow Ptarmigan hens. Polar Research 5:59–69.

    Google Scholar 

  • Gabrielson, G. W., F. Mehlum, H. E. Karlsen, Q. Anderson, and H. Parker. 1991. Energy cost during incubation and thermoregulation in the female Common Eider Somateria mollissima. Norsk Polarinstitutt Skrifter 195:51–62.

    Google Scholar 

  • Gales, R. 1989. Validation of the use of tritiated water, doubly-labeled water and 22Na for estimating food, energy and water intake in Little Penguins, Eudyptula minor. Physiol. Zool. 62:147–169.

    Google Scholar 

  • Gill, F. B. 1990. Ornithology. W. H. Freeman, New York.

    Google Scholar 

  • Goldstein, D. L. and K. A. Nagy. 1985. Resource utilization by desert quail: time and energy, food and water. Ecology 66:378–387.

    Google Scholar 

  • Grant, G. S. 1979. Avian incubation: egg temperature, nest humidity, and behavioral thermoregulation in a hot environment. Unpubl. Ph.D. diss., University of California at Los Angeles.

    Google Scholar 

  • Grant, G. S. 1984. Energy cost of incubation to the parent seabird. In Seabird Energetics, eds. B. C. Wittow and H. Rahn, pp. 59–71. Plenum Press, New York.

    Google Scholar 

  • Grant, G. S. and G. C. Whittow. 1983. Metabolic cost of incubation in the Laysan Albatross and Bonin Petrel. Comp. Biochem. Physiol. 74A:77–82.

    Google Scholar 

  • Groscolas, R. 1988. The use of body mass loss to estimate metabolic rate in fasting sea birds: a critical examination based on Emperor Penguins (Aptenodytes forsteri). Comp. Biochem. Physiol. 90A:361–366.

    Google Scholar 

  • von Haartman, L. 1956. Der einfluss der temperatur auf den brutrhythmus expermentell nachgewiesen. Ornis Fenn. 33:100–107.

    Google Scholar 

  • Haftorn, S. 1978. Egg-laying and regulation of egg temperature during incubation in the Goldcrest Regulus regulus. Ornis Scand. 9:2–21.

    Google Scholar 

  • Haftorn, S. 1983. Egg temperature during incubation in the Great Tit Parus major, in relation to ambient temperature, time of day, and other factors. Fauna Norv. Ser. C6:22–38.

    Google Scholar 

  • Haftorn, S. 1984. The behavior of an incubating female Coal Tit Parus ater in relation to experimental regulation of nest temperature. Fauna Norv. Ser. C, Cinclus 7:12–20.

    Google Scholar 

  • Haftorn, S. 1988. Incubating female passerines do not let the egg temperature fall below the “physiological zero temperature” during their absences from the nest. Ornis Scand. 19:97–110.

    Google Scholar 

  • Haftorn, S. and R. E. Reinertsen. 1985. The effect of temperature and clutch size on the en¬ergetic cost of incubation in a free-living Blue Tit (Parus caeruleus). Auk 102:470–478.

    Google Scholar 

  • Haftorn, S. and R. E. Reinertsen. 1990. Thermoregulatory and behavioral responses during incubation of free-living female Pied Flycatchers Ficedula hypoleuca. Ornis Scand. 21:255–264.

    Google Scholar 

  • Hammond, K. A. and J. Diamond. 1992. An experimental test for a ceiling on sustained metabolic rate in lactating mice. Physiol. Zool. 65:952–977.

    Google Scholar 

  • Hart, J. S. 1962. Seasonal acclimation in four species of small wild birds. Physiol. Zool. 35:224–236.

    Google Scholar 

  • Hirschfield, M. E., and D. W. Tinkle. 1975. Natural selection and the evolution of reproductive effort. Proc. Nat. Acad. Sci. USA 72:2227–2231.

    Google Scholar 

  • Howell, T. R. 1979. Breeding biology of the Egyptian Plover, Pluvianus aegyptius. Univ. Calf. Publ. Zool. 113:1–82.

    Google Scholar 

  • Howell, T. R., B. Araya, and W. R. Millie. 1974. Breeding biology of the Gray Gull Larus modestus. Univ. Calif. Publ. Zool. 104:1–69.

    Google Scholar 

  • Hubbard, J. D. 1978. Breeding biology and reproductive energetics of Mountain White-crowned Sparrows in Colorado. Unpubl. Ph.D. diss., University of Colorado, Denver.

    Google Scholar 

  • Huggins, R. A. 1941. Egg temperatures of wild birds under natural conditions. Ecology 22:148–157.

    Google Scholar 

  • Johnson, R. K., R. R. Roth, and J. T. Paul, Jr. 1990. Mass variation in breeding Wood Thrushes. Condor 92:89–96.

    Google Scholar 

  • Jones, D. and S. Birks. 1992. Megapods: recent ideas on origins, adaptations and reproduction. TREE 7:88–91.

    PubMed  CAS  Google Scholar 

  • Jones, G. 1987. Time and energy constraints during incubation in free-living swallows (Hirundo rustica): an experimental study using precision electronic balances. J. Anim. Ecol. 56:229–245.

    Google Scholar 

  • Jones, P. J. and P. Ward. 1976. The level of reserve protein as the proximate factor controlling the timing of breeding and clutch-size in the Red-billed Quelea Quelea quelea. Ibis 118:547–574.

    Google Scholar 

  • Kacelnik, A. 1984. Central place foraging in the Starling (Sturnis vulgaris) I: patch residence time. J. Anim. Ecol. 53:283–299.

    Google Scholar 

  • Kavanau, J. L. 1987. Lovebirds, Cockatiels, Budgerigars: Behavior and Evolution. Science Software Systems, Los Angeles.

    Google Scholar 

  • Kendeigh, S. C. 1949. Effect of temperature and season on energy resources of the English Sparrow. Auk 66:113–127.

    Google Scholar 

  • Kendeigh, S. C. 1952. Parental care and its evolution in birds. Ill. Biol. Mongr. 22:1–357.

    Google Scholar 

  • Kendeigh, S. C. 1963. Thermodynamics of incubation in the House Wren, Troglodytes aedon. In i, ed. C. G. Sibley, J. J. Hickey, and M. B. Hickey pp. 884–904. American Ornithologists’ Union, Baton Rouge, Louisiana.

    Google Scholar 

  • Kendeigh, S. C., V R. Dolnik, and V M. Gavrilov. 1977. Avian energetics. In Granivorous Birds in Ecosystems, ed. J. Pinowski and S. C. Kendeigh pp. 127–204. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • King, J. R. 1973. Energetics of reproduction in birds. In Breeding Biology of Birds, ed. D. S. Farner, pp. 78–120. National Academy of Sciences, Washington, DC.

    Google Scholar 

  • King, J. R. 1974. Seasonal allocation of time and energy resources in birds. In Avian Energetics, pub. no. 15 ed. R. A. Paynter, pp. 1–334. Nuttall Ornithological Club, Cambridge, Massachusetts.

    Google Scholar 

  • King, J. R. and D. S. Farner. 1961. Energy metabolism, thermoregulation and body temperature. In Biology and Comparative Physiology of Birds, ed. A. J. Marshall, pp. 215–288. Academic Press, New York.

    Google Scholar 

  • Lack, D. 1954. The Natural Regulation of Animal Numbers. Clarendon Press, Oxford.

    Google Scholar 

  • Lack, D. 1968. Ecological Adaptations for Breeding in Birds. Chapman and Hall, London.

    Google Scholar 

  • Landauer, W. 1967. The hatchability of chicken eggs as influenced by environment and heredity. Storrs Agric. Exp. Station Monogr. I, Storrs, Connecticut.

    Google Scholar 

  • Lee, S., R. Evans, and S. Bugden. 1993. Benign neglect of terminal eggs in Herring Gulls. Condor 95:507–514.

    Google Scholar 

  • Lifjeld, J. T. and T. Slagsvold. 1986. The function of courtship feeding during incubation in the Pied Flycatcher, Ficedula hypoleuca. Anim. Behav. 34:1441–1453.

    Google Scholar 

  • Lifson, N. and R. McClintock. 1966. Theory of use of the turnover rates of body water for measuring energy and material balance. J. Theor. Biol. 12:46–74.

    PubMed  CAS  Google Scholar 

  • Lill, A. 1979. Nest inattentiveness and its influence on development of the young in the Superb Lyrebird. Condor 81:225–231.

    Google Scholar 

  • Lundy, H. 1969. A review of the effects of temperature, humidity, turning, and gaseous environment in the incubator on the hatchability of the hen’s egg. In The Fertility and Hatchability of the Hen’s Egg, ed. T. C. Carter and B. M. Freeman, pp. 143–176. Oliver and Boyd, Edinburgh.

    Google Scholar 

  • Lyon, B. E. and R. D. Montgomerie. 1985. Incubation feeding in snow buntings: female manipulation or indirect male parental care? Behav. Ecol Sociobiol. 17:279–284.

    Google Scholar 

  • Lyon, B. E. and R. D. Montgomerie. 1987. Ecological correlates of incubation feeding: a comparative study of high arctic finches. Ecology 68:713–722.

    Google Scholar 

  • Mallory, M. L. and P. J. Weatherhead. 1993. Incubation rhythms and mass loss of Common Goldeneyes. Condor 95:849–859.

    Google Scholar 

  • Marder, J. and I. Gavrieli-Levin. 1986. Body and egg temperature regulation in incubating pigeons exposed to heat stress: the role of skin evaporation. Physiol. Zool. 59:532–538.

    Google Scholar 

  • Masman, D. 1986. The Annual Cycle of the Kestrel (Falco tinnunculus). Durkkerij Van Denderen, Groningen.

    Google Scholar 

  • Masman, D., S. Daan, and J. A. Beldhuis. 1988. Ecological energetics of the Kestrel: daily energy expenditure throughout the year based on time-energy budget, food intake and doubly labelled water methods. Ardea 76:64–81.

    Google Scholar 

  • McNab, B. 1966. An analysis of the body temperature of birds. Condor 68:48–55.

    Google Scholar 

  • Mertens, J. A. L. 1977. The energy requirements for incubation in Great Tits Parus major. Ardea 65:184–196.

    Google Scholar 

  • Mertens, J. A. L. 1980. The energy requirements for incubation in Great Tits and other bird species. Ardea 68:185–192.

    Google Scholar 

  • Miskelly, C. 1989. Flexible incubation system and prolonged incubation in New Zealand Snipe. Wilson Bull. 101:132–134.

    Google Scholar 

  • Montevecchi, W. A., V L. Birt-Friesen, and D. K. Cairns. 1992. Reproductive energetics and prey harvest of Leach’s Storm Petrels in the Northwest Atlantic. Ecology 73:823–832.

    Google Scholar 

  • Moreno, J. 1989. Energetic constraints on uniparental incubation in the Wheatear Oenanthe oenanthe (L.) Ardea 77:107–115.

    Google Scholar 

  • Moreno, J. and A. Carlson. 1989. Clutch size and the costs of incubation in the Pied Flycatcher Ficedula hypoleuca. Ornis Scand. 20:123–128.

    Google Scholar 

  • Moreno, J., L. Gustafsson, A. Carlson, and T. Part. 1991. The cost of incubation in relation to clutch-size in the Collared Flycatcher Ficedula albicollis. Ibis 133:186–192.

    Google Scholar 

  • Morton, M. and M. Pereyra. 1985. The regulation of egg temperatures and attentiveness patterns in the Dusky Flycatcher (Empidonax oberholseri). Auk 102:25–37.

    Google Scholar 

  • Mugaas, J. N. and J. R. King. 1981. The annual variation in daily energy expenditure of the black-billed magpie: a study of thermal and behavioral energetics. Stud. Avian Biol. 5:1–78.

    Google Scholar 

  • Murphy, E. C. and E. Haukioja. 1986. Clutch size in nidicolus birds. In Current Ornithology, ed. R. F. Johnston, pp. 141–180. Plenum Press, New York.

    Google Scholar 

  • Murton, R. K. and N. J. Westwood. 1977. Avian Breeding Cycles. Clarendon Press, Oxford.

    Google Scholar 

  • Nagy, K. A. 1980. C02 production in animals: an analysis of potential errors in the doubly-labeled water method. Am. J. Physiol. 238:R466–R473.

    PubMed  CAS  Google Scholar 

  • Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57:111–128.

    Google Scholar 

  • Nice, M. M. 1938. The biological significance of bird weights. Bird Banding 9:1–11.

    Google Scholar 

  • Nilsson, J. and H. G. Smith. 1988. Incubation feeding as a male tactic for early hatching. Anim. Behav. 36:641–647.

    Google Scholar 

  • Norberg, R. 1981. Temporary weight decrease in breeding birds may result in more fledged young. Am. Nat. 118:838–850.

    Google Scholar 

  • Norton, D. 1972. Incubation schedules of four species of Calidridine sandpipers at Barrow, Alaska. Condor 74:164–176.

    Google Scholar 

  • Nur, N. 1984. The consequences of brood size for breeding blue tits I. Adult survival, weight change and the cost of reproduction. J. Anim. Ecol. 53:479–496.

    Google Scholar 

  • Nur, N. 1988. The consequences of brood size for breeding Blue Tits. III. Measuring the cost of reproduction: survival, future fecundity and differential dispersal. Evolution 42:351–362.

    Google Scholar 

  • Obst, B. S., K. A. Nagy, and R. E. Ricklefs. 1987. Energy utilization by Wilson’s Storm- Petrel (Oceanites oceanicus). Physiol. Zool. 60:200–210.

    Google Scholar 

  • O’Connor, R. J. 1978. Energetics of reproduction in birds. In Acta XVII Congressus International Ornithologici, ed. R. Nőhring pp. 306–311. Verlag der Deutschen Ornithologen-Gesellschaft, Berlin.

    Google Scholar 

  • Ostrom, J. H. 1975. The origin of birds. Annu. Rev. Earth Planet Sci. 3:55–77.

    Google Scholar 

  • Partridge, L. and P. H. Harvey. 1988. The ecological context of life history evolution. Science 24:1449–1455.

    Google Scholar 

  • Peters, R. H. 1983. The Ecological Implications of Body Size. Cambridge University Press, Cambridge, Massachusetts.

    Google Scholar 

  • Pettifor, R. A. 1993. Brood manipulation experiments. II. A cost of reproduction in blue tits (Parus caeruleus)? J. Anim. Ecol. 62:145–159.

    Google Scholar 

  • Pettit, T. N., K. A. Nagy, H. I. Ellis, and G. C. Whittow. 1988. Incubation energetics of the Laysan Albatross. Oecologia 74:546–550.

    Google Scholar 

  • Prince, P. A., C. Ricketts, and G. Thomas. 1981. Weight loss in incubating Albatrosses and its implications for their energy and food requirements. Condor 83:238–242.

    Google Scholar 

  • Prinzinger, R. 1992. Die Energie Kosten der Bebriitung bei der Amsel Turdus merula. Der Ornithologische Beobachter 89:111–125.

    Google Scholar 

  • Prinzinger, R., A. Preßmar, and E. Schleucher. 1991. Body temperature in birds. Comp. Biochem. Physiol. 99A:499–506.

    Google Scholar 

  • Resnick, D. 1992. Measuring the costs of reproduction. TREE 7:42–45.

    Google Scholar 

  • Ricklefs, R. E. 1974. Energetics of reproduction in birds. In Avian Energetics, publ. no. 15, ed. R. A. Paynter, Jr., Nuttall Ornithological Club, Cambridge, Massachusetts.

    Google Scholar 

  • Ricklefs, R. E. 1993. Sibling competition, hatching asynchrony, incubation period, and lifespan in altricial birds. In Current Ornithology, ed. D. Power, pp. 199–269. Plenum Press, New York.

    Google Scholar 

  • Ricklefs, R. E. and D. T. Hussell. 1984. Changes in adult mass associated with the nesting cycle in the European Starling. Ornis Scand. 15:155–161.

    Google Scholar 

  • Ricklefs, R. E. and J. B. Williams. 1984. Daily energy expenditure and water-turnover rate of adult European starlings (Sturnus vulgaris) during the nesting cycle. Auk 101:707–715.

    Google Scholar 

  • Ricklefs, R. E., D. D. Roby, and J. B. Williams. 1986. Daily energy expenditure of adult Leach’s storm-petrels during the nesting cycle. Physiol. Zool. 59:649–660.

    Google Scholar 

  • Roby, D. and R. E. Ricklefs. 1984. Observations on the cooling tolerance of embryos of the Diving Petrel Pelecanoides georgicus. Auk 101:160–161.

    Google Scholar 

  • Romanoff, A. L. and A. J. Romanoff. 1949. The Avian Egg. John Wiley, New York.

    Google Scholar 

  • Schmidt-Nielsen, K. 1983. Animal Physiology: Adaptation and Environment. 3rd ed. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Seymour, R. S. and R. A. Ackerman. 1980. Adaptations to underground nesting in birds and reptiles. Amer. Zool. 20:437–447.

    Google Scholar 

  • Skutch, A. F. 1962. The constancy of incubation. Wilson Bull 74:115–152.

    Google Scholar 

  • Skutch, A. F. 1976. Parent Birds and Their Young. University of Texas Press, Austin.

    Google Scholar 

  • Sherry, D. F., N. Mrosovsky, and J. A. Hogan. 1980. Weight loss and anorexia during incubation in birds. J. Comp. Physiol. Psych. 94:89–98.

    Google Scholar 

  • Shilov, I. A. 1968. Heat Regulation in Birds. Moscow University Press, Moscow. (Translated from Russian in 1973 by National Technical Information Service, U.S. Dept. of Commerce, Springfield, VA.).

    Google Scholar 

  • Shine, R. 1988. Parental care in reptiles. In Biology of the Reptilia, vol. 16, ed. C. Gans, pp. 276–329. Liss, New York.

    Google Scholar 

  • Sibley, C. G. and J. E. Ahlquist. 1990. Phylogeny and Classification of Birds: A Study of Molecular Evolution. Yale University Press, New Haven, Connecticut.

    Google Scholar 

  • Silver, R., H. Andrews, and G. F. Ball. 1985. Parental care in an ecological perspective: a quantitative analysis of avian subfamilies. Amer. Zool. 25:823–840.

    Google Scholar 

  • Stearns, S. C. 1976. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51:3–47.

    PubMed  CAS  Google Scholar 

  • Swain, S. D. 1991. Metabolism and energy reserves of brood-rearing Horned Larks (Eremophila alpestris. Comp. Biochem. Physiol. 99a:69–73.

    CAS  Google Scholar 

  • Toien, V, O. Aulie, and J. B. Steen. 1986. Thermoregulatory responses to egg cooling in incubating Bantam hens. J. Comp. Physiol. B 156:303–307.

    Google Scholar 

  • Turner, J. S. 1991. The thermal energetics of incubated eggs. In Egg Incubation: its Effects on Embryonic Development in Birds and Reptiles, eds. D. C. Deeming and M. Fergu¬son, pp. 117–145. Cambridge University Press, Cambridge, England.

    Google Scholar 

  • Utter, J. M. 1971. Daily energy expenditure of free-living Purple Martins (Progne subis) and Mockingbirds (Mimus polyglottos) with a comparison of two northern populations of mockingbirds. Unpubl. Ph.D. diss., Rutgers University, New Brunswick, New Jersey.

    Google Scholar 

  • Van Tyne, J. and A. J. Berger. 1976. Fundamentals of Ornithology, 2nd ed. John Wiley, New York.

    Google Scholar 

  • Vleck, C. M. 1981a. Hummingbird incubation: Female attentiveness and egg temperature. Oecologia 51:199–205.

    Google Scholar 

  • Vleck, C. M. 1981b. Energetic cost of incubation in the Zebra Finch. Condor 83:229–237.

    Google Scholar 

  • Vleck, D., C. M. Vleck, and R. S. Seymour. 1984. Energetics of embryonic development in the megapode birds, mallee fowl Leipoa ocellata and brush turkey Alectura lathami. Physiol. Zool 57:444–456.

    Google Scholar 

  • Walsberg, G. E. 1983. Avian ecological energetics. In Avian Biology, ed. D. S. Farner and J. R. King, pp. 161–220. Academic Press, New York.

    Google Scholar 

  • Walsberg, G. E. and J. R. King. 1978. The heat budget of incubating mountain White-crowned Sparrows (Zorotrichia leucophrys) in Oregon. Physiol Zool 51:92–103.

    Google Scholar 

  • Walsberg, G. E. and K. A. Voss-Roberts. 1983. Incubation in desert-nesting doves: mechanisms for egg cooling. Physiol Zool 56:88–93.

    Google Scholar 

  • Ward, P. 1965. The breeding biology of the Black-faced Dioch Quelea quelea in Nigeria. Ibis 107:326–349.

    Google Scholar 

  • Weathers, W. W. 1985. Energy cost of incubation in the canary. Comp. Biochem. Physiol. 81A:411–413.

    Google Scholar 

  • Weathers, W. W. and F. G. Stiles. 1989. Energetics and water balance in free-living tropical hummingbirds. Condor 91:324–331.

    Google Scholar 

  • Weathers, W. W. and K. A. Sullivan. 1989a. Juvenile foraging proficiency, parental effort, and avian reproductive success. Ecol. Monogr. 59:223–246.

    Google Scholar 

  • Weathers, W. W., R. S. Seymour, and R. V Baudinette. 1992. Energetics of mound-tending behavior in the Malleefowl, Leipoa ocellata (Megapodiidae). Anim. Behav. 44:333–341.

    Google Scholar 

  • Weathers, W. W. and K. A. Sullivan. 1989b. Nest attentiveness and egg temperature in the Yellow-eyed Junco. Condor 91:628–633.

    Google Scholar 

  • Webb, D. R. 1987. Thermal tolerance of avian embryos: A review. Condor 89:874–898.

    Google Scholar 

  • Weinrich, J. and J. Baker. 1978. Adelie Penguin (Pygoscelis adelie) embryonic development at different temperatures. Auk 95:569–576.

    Google Scholar 

  • Wesolowski, T. 1994. On the origin of parental care and the early evolution of male and female parental roles in birds. Am. Nat. 143:39–58.

    Google Scholar 

  • Westerterp, K. R. and D. M. Bryant. 1984. Energetics of free-existence in swallows and martins (Hirundinidae) during breeding: a comparative study using doubly labeled water. Oecologia 62:376–381.

    Google Scholar 

  • Wheelwright, N. and P. D. Boersma. 1979. Egg chilling and the thermal environment of the Fork-tailed Storm Petrel (Oceanodroma furcata) nest. Physiol. Zool. 52:231–239.

    Google Scholar 

  • White, F. N. and J. L. Kinney. 1974. Avian incubation. Science 189:107–115.

    Google Scholar 

  • Wijnandts, H. 1984. Ecological energetics of the Long-eared Owl, Asio otus. Ardea 72:1–92.

    Google Scholar 

  • Williams, G. C. 1966. Natural selection, the costs of reproduction, and a refinement of Lack’s principle. Am. Nat. 100:687–690.

    Google Scholar 

  • Williams, J. B. 1985. Validation of the doubly-labeled water technique for measuring energy metabolism in starlings and sparrows. Comp. Biochem. Physiol. 80A:349–353.

    Google Scholar 

  • Williams, J. B. 1987. Field metabolism and food consumption of Savannah sparrows during the breeding season. Auk 104:227–289.

    Google Scholar 

  • Williams, J. B. 1988. Field metabolism of tree swallows during the breeding season. Auk 105:706–714.

    Google Scholar 

  • Williams, J. B. 1991. On the importance of energy considerations to small birds with gynelateral intermittent incubation. In Acta XX Congressus Internationalis Ornithologici, ed. B. Bell et al., pp. 1964–1975. New Zealand Ornithological Congress Trust Board, Wellington, N.Z.

    Google Scholar 

  • Williams, J. B. 1993. Energetics of incubation in free-living Orange-breasted Sunbirds in South Africa. Condor 95:43–51.

    Google Scholar 

  • Williams, J. B. and B. Dwinnel. 1990. Field metabolism of free-living Savannah Sparrows during incubation: a study using doubly labeled water. Physiol Zool. 63:353–372.

    Google Scholar 

  • Williams, J. B. and K. A. Nagy. 1984. Validation of the doubly-labeled water technique for measuring energy metabolism in Savannah Sparrows. Physiol Zool. 57:325–328.

    Google Scholar 

  • Williams, J. B. and K. A. Nagy. 1985. Daily energy expenditure by female Savannah Sparrows feeding nestlings. Auk 102:187–190.

    Google Scholar 

  • Williams, J. B. and R. E. Ricklefs. 1984. Egg temperature and embryo metabolism in some high latitude procellariiform birds. Physiol Zool 57:118–127.

    Google Scholar 

  • Yom-Tov, Y. and R. Hilborn. 1981. Energetic constraints on clutch size and time of breeding in temperate zone birds. Oecologia 48:234–243.

    Google Scholar 

  • Yom-Tov, Y., A. Ar, and A. Mendelssohn. 1978. Incubation behavior of the Dead Sea Sparrow. Condor 80:340–343.

    Google Scholar 

  • Zerba, E. and M. L. Morton, 1983. Dynamics of incubation in Mt. White-crowned sparrows. Condor 85:1–11.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Chapman & Hall

About this chapter

Cite this chapter

Williams, J.B. (1996). Energetics of Avian Incubation. In: Carey, C. (eds) Avian Energetics and Nutritional Ecology. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0425-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0425-8_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8046-7

  • Online ISBN: 978-1-4613-0425-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics