Advertisement

Pauli Blocking In Relativista (E,2E) Collisions

  • H. Ast
  • Colm T. Whelan
  • S. Keller
  • J. Rasch
  • H. R. J. Walters
  • R. M. Dreizler
Part of the Physics of Atoms and Molecules book series (PAMO)

Abstract

One cannot have a relativistic description of angular momentum without spin. Indeed even in a non-quantum theory orbital angular momentum is an operationally unsound concept - because of the nature of Lorentz transformation one cannot set about defining such a quantity which would admit a measurement1. In quantum mechanics a full consistent theory is only possible if spin is included2; but spin on its own is only properly defined in the rest frame of the particle. When we say that we are going to discuss spin dependent effects in relativistic (e,2e) processes we have to be very careful about what we really mean since it is the total angular momentum which is the only sensible physical quantity that we can properly talk about.

Keywords

Impact Energy Spin Projection Relative Angle Detection Angle Spin Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A Einstein, The Meaning of Relativity 5 th ed. Princeton Unviversity Press: Princeton NJ (1955).Google Scholar
  2. PAM Dirac, The Principles of Quantum Mechanics Clarendon: Oxford, (4 th ed. 1957).Google Scholar
  3. Colm T Whelan, HRJ Walters and X Zhang, (e,2e), effective charges, distorted waves and all that in (e,2e) and related processes eds. CT Whelan, HRJ Walters, A Lahmam-Bennani and H Ehrhardt p.L Kluwer: Dordrecht (1993).Google Scholar
  4. HT Prinz, KH Besch and W Nakel, Spin orbit interaction of the continuum electrons in relativistic (e,2e) measurements Phys. Rev. Lett. 74, 243 (1995).Google Scholar
  5. HT Prinz, KH Besch and W Nakel, Spin orbit interaction of the continuum electrons in relativistic (e,2e) measurements Phys. Rev. Lett. 74, 243 (1995).Google Scholar
  6. S Keller, RM Dreizler, H Ast, CT Whelan and HRJ Walters, Theory of (e,2e) processes with spin polarized relativistic electrons Phys. Rev. A, submittedGoogle Scholar
  7. E Schule and W Nakel, Triply differential cross section for K shell ionization of silver by relativistic electron impact J. Phys. B: At. Mol. Phys. 15, L639 (1982).Google Scholar
  8. H Ruoff and W Nakel, Absolute triply differential cross section for K-shell ionisation by relativistic electron impact for high atomic number J. Phys. B: At. Mol. Phys. 20, 2290 (1987).Google Scholar
  9. J Bonfert, H Graf and W Nakel, Relativistic (e,2e) processes on atomic inner shells J.Google Scholar
  10. Phys. B: At. Mol. Opt. Phys. 24, 1423 (1991).Google Scholar
  11. HRJ Walters, H Ast, CT Whelan, RM Dreizler, H Graf, CD Schröter, J BonfertGoogle Scholar
  12. and W Nakel, Relativistiv (e,2e) collisions on atomic inner shells in symmetric geometryGoogle Scholar
  13. Z. Phys.D 23, 253, (1992).Google Scholar
  14. JN Das and AN Konar, Inner shell ionization cross sections when Sommerfeld-MaueGoogle Scholar
  15. wavefunction is used J. Phys. B: At. Mol. Phys. 7, 2417, (1974).Google Scholar
  16. F Bell, Double and triple differential cross sections for K shell ionization by relativisticGoogle Scholar
  17. electron impact J. Phys. B: At. Mol. Opt. Phys. 22, 287, (1989).Google Scholar
  18. D Jakubassa-Amundsen, Relativistic theory of K shell ionization by fast electrons Z.Google Scholar
  19. Phys.D 11, 305, (1889).Google Scholar
  20. D Jakubassa-Amundsen, A systematic study of relativistic (e,2e) collsions in comparison with experiment J. Phys. B: At. Mol. Opt. Phys. 25, 1297,(1992).Google Scholar
  21. YV Popov and NM Kuzmina, EBWA calculations for the relativistic (e,2e) experiments J. Phys. B: At. Mol. Opt. Phys. 26, 1215, (1993).Google Scholar
  22. A Cavalli and L Avaldi, Symmetric (e,2e) experiments at 300 and 500 keV on Cu, Ag,and Au K shell and impulsive models NUOVO Cim. 16 D, 1, (1994).Google Scholar
  23. H Ast, S Keller, CT Whelan, HRJ Walters and RM Dreizler, Electron impactGoogle Scholar
  24. ionization of the K shell of silber and gold in coplanar asymmetric geometry Phys. Rev. A Google Scholar
  25. 50, Rl, (1994).Google Scholar
  26. S Keller, CT Whelan, H Ast, HRJ Walters and RM Dreizler, Relativistic distortedGoogle Scholar
  27. wave Born calculations for (e,2e) processes on inner shells of heavy atoms Phys. Rev. A 50Google Scholar
  28. , 3865, (1994).Google Scholar
  29. Colm T Whelan, H Ast, S Keller, HRJ Walters and RM Dreizler, Triple differentialGoogle Scholar
  30. cross sections in energy sharing symmetric geometry for gold and uranium at relativistic impact energies J. Phys. B: At. Mol Opt. Phys. 28, L33, (1995).Google Scholar
  31. Colm T Whelan, H Ast, HRJ Walters, S Keller and RM Dreizler, RelativisticGoogle Scholar
  32. energy sharing (e,2e) processes in a coplanar constant Θ1,2 geometry Phys. Rev.A, inGoogle Scholar
  33. X Zhang, CT Whelan and HRJ Walters, (e,2e) cross sections for the ionization of He in coplanar symmetric geometry J. Phys. B: At. Mol. Opt. Phys. 23, L509, (1990).Google Scholar
  34. L Frost, P Freienstein and M Wagner, 200 eV coplanar symmetric (e,2e) on helium: a sensitive test of reaction models J. Phys. B: At. Mol. Opt. Phys. 23, L715, (1990).Google Scholar
  35. Colm T Whelan, RJ Allan, HRJ Walters, PCI, polarization and exchange effects in (e,2e) collisions Joural de Physique IV, Colloq. 3, C6-39, (1993).Google Scholar
  36. J Röder, J Rasch, K Jung, CT Whelan, H Ehrhardt, RJ Allan and HRJ Walters, Phys. Rev.A, in pressGoogle Scholar
  37. B Joulakain, S Keller, J Hanssen and H Ast, PCI effects in inner shell (e,2e) collisions, in preparation, (1995).Google Scholar
  38. J Rasch, CT Whelan, RJ Allan, HRJ Walters and H Ast, J. Phys. B: At. Mol. Opt. Phys., in preparation, (1995).Google Scholar

Copyright information

© Plenum Press 1996

Authors and Affiliations

  • H. Ast
    • 1
    • 2
  • Colm T. Whelan
    • 1
  • S. Keller
    • 2
  • J. Rasch
    • 1
  • H. R. J. Walters
    • 3
  • R. M. Dreizler
    • 2
  1. 1.Department of Applied Mathematics and Theoretical PhysicsUniversity of CambridgeCambridgeUK
  2. 2.Institut für Theoretische Physik der UniversitätFrankfurt am MainGermany
  3. 3.Department of Applied Mathematics and Theoretical PhysicsThe Queen’s University of BelfastBelfastNorthern Ireland

Personalised recommendations