Application of the Cluster Variation Method to the Image Restoration Problem

  • Kazuyuki Tanaka
  • Tohru Morita

Abstract

The pair approximation in the cluster variation method is applied to the image restoration problem based on the Q-state Potts model with a local non-uniform external field.

Keywords

Entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Geman and D. Geman, IEEE Trans. Pattern Anal Machine Intel. 6, 721 (1984).MATHCrossRefGoogle Scholar
  2. 2.
    B. Gidas, IEEE Trans. Pattern Anal. Machine Intel 11, 164 (1989).MATHCrossRefGoogle Scholar
  3. 3.
    J. Zhang, IEEE Trans. Signal Processing 40, 2570 (1992); IEEE Trans. Image Processing 2, 27 (1993); IEEE Trans. Image Processing 4, 19 (1995).MATHCrossRefADSGoogle Scholar
  4. 4.
    C.-h. Wu and P. C. Doerschuk, IEEE Trans. Pattern Anal Machine Intel. 17, 275 (1995); ibid., p. 391.CrossRefGoogle Scholar
  5. 5.
    R. Kikuchi, Phys. Rev. 81, 988 (1951).MathSciNetMATHCrossRefADSGoogle Scholar
  6. 6.
    R. Kikuchi, Prog. Theor. Phys. Suppl. No. 115, 1 (1994).Google Scholar
  7. 7.
    T. Morita, J. Phys. Soc. Jpn. 12, 753 (1957).CrossRefADSGoogle Scholar
  8. 8.
    T. Morita, Prog. Theor. Phys. Suppl. No. 115, 27 (1994).Google Scholar
  9. 9.
    A. G. Schlijper, Phys. Rev. B 27, 6841 (1983).CrossRefADSGoogle Scholar
  10. 10.
    A. G. Schlijper, J. Siat. Phys. 40, 1 (1985).MathSciNetCrossRefADSGoogle Scholar
  11. 11.
    T. Morita, Prog. Theor. Phys. Suppl. No. 80, 103 (1984).Google Scholar
  12. 12.
    H. A. Bethe, Proc. R. Soc. London A150, 552 (1935).ADSGoogle Scholar
  13. 13.
    H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 (1941); ibid., p. 263.MathSciNetMATHCrossRefADSGoogle Scholar
  14. 14.
    Y. Murai, K. Tanaka, and T. Morita, Physica A217, 214 (1995).ADSGoogle Scholar
  15. 15.
    S. Fujiki, M. Katori, and M. Suzuki, J. Phys. Soc. Jpn. 59, 2681 (1990).CrossRefADSGoogle Scholar
  16. 16.
    M. Katori and M. Suzuki, Prog. Theor. Phys. Suppl. No. 115, 83 (1994).Google Scholar
  17. 17.
    L. Onsager, Phys. Rev. 65, 117 (1944).MathSciNetMATHCrossRefADSGoogle Scholar
  18. 18.
    M. Suzuki, Phys. Lett. A116, 3 (1986); J. Phys. Soc. Jpn. 55, 4025 (1986).Google Scholar
  19. 19.
    M. Katori and M. Suzuki, J. Phys. Soc. Jpn. 57, 3753 (1988).MathSciNetCrossRefADSGoogle Scholar
  20. 20.
    K. Wada and N. Watanabe, J. Phys. Soc. Jpn. 59, 2610 (1990).CrossRefADSGoogle Scholar
  21. 21.
    K. Tanaka, T. Horiguchi, and T. Morita, J. Phys. Soc. Jpn. 60, 2576 (1991); Phys. Lett. A165, 266 (1992); Physica A192, 647 (1993); Prog. Theor. Phys. Suppl. No. 115, 221 (1994).MathSciNetCrossRefADSGoogle Scholar
  22. 22.
    O. Nagai, T. Horiguchi, and S. Miyashita, in Magnetic Systems with Competing Interactions (Frustrated Spin Systems), edited by H. T. Diep (World Scientific, 1994).Google Scholar
  23. 23.
    F. Y. Wu, Rev. Mod. Phys. 54, 235 (1982).CrossRefADSGoogle Scholar
  24. 24.
    T. Morita, Physica A133, 173 (1985).ADSGoogle Scholar
  25. 25.
    T. Morita, J. Stat. Phys. 34, 319 (1984).CrossRefADSGoogle Scholar
  26. 26.
    T. Morita, Phys. Lett. A161, 140 (1991).ADSGoogle Scholar
  27. 27.
    T. Morita, Prog. Theor. Phys. 85, 243 (1991).CrossRefADSGoogle Scholar
  28. 28.
    T. Morita, J. Stat. Phys. 59, 819 (1990).MATHCrossRefADSGoogle Scholar
  29. 29.
    K. Tanaka and T. Morita, Phys. Lett. A203, 122 (1995).ADSGoogle Scholar
  30. 30.
    T. Morita, J. Math. Phys. 13, 115 (1972).CrossRefADSGoogle Scholar
  31. 31.
    S. Katsura and S. Fujiki, J. Phys. C13, 4711 (1980).ADSGoogle Scholar
  32. 32.
    K. Tanaka, Y. Takane, H. Ebisawa, and T. Morita, J. Phys. Soc. Jpn. 63, 2909 (1994).CrossRefADSGoogle Scholar
  33. 33.
    M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover Publ. Inc., New York, 1995) p. 788 and p. 791.Google Scholar
  34. 34.
    T. Morita, J. Phys. Soc. Jpn. 62, 4218 (1993), where the polynomials are written but with misprintings: In the equation at the bottom of p. 4222, “(2k+1)!” should read “(2k+1)”, in the equation just above it, “(x-m)!” should read “Γ(x-m+1)”, and in the third row in p. 4223, “= -s” should read “= -s/S” MATHCrossRefADSGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Kazuyuki Tanaka
    • 1
  • Tohru Morita
    • 2
  1. 1.Department of Computer Science and Systems EngineeringMuroran Institute of TechnologyMuroranJapan
  2. 2.Department of Computer Science College of EngineeringNihon UniversityKoriyamaJapan

Personalised recommendations