Advertisement

Lattice Models and Cluster Expansions for the Prediction of Oxide Phase Diagrams and Defect Arrangements

  • G. Ceder
  • P. D. Tepesch
  • G. D. Garbulsky
  • A. F. Kohan

Abstract

First-principles quantum mechanics can be combined with a lattice model cluster expansion to predict the arrangement and configurational entropy of defects in concentrated solid solutions. We demonstrate that for the CaO-MgO system, the effective interactions in the cluster expansion can be computed accurately from first-principles. In systems in which substitutional disorder on the cation and anion sublattices is coupled through charge compensation, two coupled binary expansions can be used. This is applied to the Gd2O3-ZrO2 system. Even with the strong electrostatic contribution to the configurational energy, a short-range cluster expansion accurately models the energetics of these ionic materials.

Keywords

Lattice Model Cluster Expansion Cation Sublattice Anion Sublattice Pyrochlore Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. de Fontaine, in Solid State Physics, edited by H. Ehrenreich and D. Turnbull (Academic Press, 1994), Vol. 47, p. 33.Google Scholar
  2. 2.
    G. Ceder, Computational Materials Science 1, 144 (1993).CrossRefGoogle Scholar
  3. 3.
    G. Ceder, et al., Phys. Rev. B 41, 8698 (1990).CrossRefADSGoogle Scholar
  4. 4.
    B. J. Wuensch, Materials Science and Engineering B 18, 186 (1992).CrossRefGoogle Scholar
  5. 5.
    R. Clarke, N. Caswell, S. A. Solin, and P. M. Horn, Phys. Rev. Lett 43, 2018 (1979).CrossRefADSGoogle Scholar
  6. 6.
    J. M. Sanchez, F. Ducastelle, and D. Gratias, Physica 128A, 334 (1984).MathSciNetADSGoogle Scholar
  7. 7.
    M. Asta, R. McCormack, and D. de Fontaine, Phys. Rev. B 48, 748 (1993).CrossRefADSGoogle Scholar
  8. 8.
    M. Asta, D. de Fontaine, M. Van Schilfgaarde, and M. Sluiter, Phys. Rev. B 46, 5055 (1992).CrossRefADSGoogle Scholar
  9. 9.
    G. Ceder, et al., Acta Metall. Mater. 38, 2299 (1990).CrossRefGoogle Scholar
  10. 10.
    G. Ceder, M. Asta, and D. de Fontaine, Mat. Res. Soc. Symp. Proc., 169, 189 (1990).CrossRefGoogle Scholar
  11. 11.
    F. Ducastelle, Order and Phase Stability in Alloys. Eds. F. R. de Boer and D. G. Pettifor, Cohesion and Structure (North-Holland, Amsterdam, 1991), Vol. 3.Google Scholar
  12. 12.
    L. G. Ferreira, S. Wei, and A. Zunger, Phys. Rev. B 40, 3197 (1989).CrossRefADSGoogle Scholar
  13. 13.
    J. M. Sanchez, J. P. Stark, and V. L. Moruzzi, Phys. Rev. B 44, 5411 (1991).CrossRefADSGoogle Scholar
  14. 14.
    M. Sluiter, P. Turchi, F. Zezhong, and D. de Fontaine, Phys. Rev. Lett. 60, 716 (1988).CrossRefADSGoogle Scholar
  15. 15.
    M. Sluiter, P. E. A. Turchi, F. J. Pinski, and G. M. Stocks, J. Phase Equilibria 13, 605 (1992).CrossRefGoogle Scholar
  16. 16.
    P. E. A. Turchi, et al, Phys. Rev. Lett. 67, 1779 (1991).CrossRefADSGoogle Scholar
  17. 17.
    R. McCormack, Ph.D. thesis, U.C. Berkeley (1995).Google Scholar
  18. 18.
    G. Ceder, G. D. Garbulsky, D. Avis, and K. Fukuda, Phys. Rev. B 49, 1 (1994).CrossRefADSGoogle Scholar
  19. 19.
    P. D. Tepesch, G. D. Garbulsky, and G. Ceder, Phys. Rev. Lett. 74, 2272 (1995).CrossRefADSGoogle Scholar
  20. 20.
    C. Wolverton, G. Ceder, D. de Fontaine, and H. Dreyssé, Phys. Rev. B 48, 726 (1993).CrossRefADSGoogle Scholar
  21. 21.
    A. Zunger, in Statics and Dynamics of Alloy Phase Transformations, edited by P. E. A. Turchi and A. Gonis, p. 361 (1994).CrossRefGoogle Scholar
  22. 22.
    D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, Phys. Rev. B 46, 12587 (1992).CrossRefADSGoogle Scholar
  23. 23.
    G. Ceder, G. D. Garbulsky, and P. D. Tepesch, Phys. Rev. B 51, 11257 (1995).CrossRefADSGoogle Scholar
  24. 24.
    E. Salje and V. Devarajan, Phase Transitions 6, 235 (1986).CrossRefGoogle Scholar
  25. 25.
    R. Kikuchi, Phys. Rev. 81, 988 (1951).MathSciNetMATHCrossRefADSGoogle Scholar
  26. 26.
    A. Nakamura and J. B. J. Wagner, J. Electrochemical Soc. 133, 1542 (1986).CrossRefGoogle Scholar
  27. 27.
    M. P. van Dijk, A. J. Burggraaf, A. N. Cormack, and C. R. A. Catlow, Solid State Ionics, 17 159 (1985)CrossRefGoogle Scholar
  28. 27.
    A. Dwivedi and A. N. Cormack, Journal of Solid State Chemistry, 79, 218 (1989).CrossRefADSGoogle Scholar
  29. G. Ceder, P. D. Tepesch, C. Wolverton, and D. de Fontaine, in Statics and Dynamics of Alloy Phase Transformations, edited by P. E. A. Turchi and A. Gonis, p. 571 (1994).Google Scholar
  30. 29.
    G. Ceder, Ph.D. thesis, U.C. Berkeley (1991).Google Scholar
  31. 30.
    T. Takahashi and Y. Suzuki, Proc. J. Intl. Etude Piles Combust. 2, 378 (1967)Google Scholar
  32. 30.
    W. Baukal, Electrochim. Acta 14, 1071 (1969).CrossRefGoogle Scholar
  33. 31.
    G. D. Garbulsky and G. Ceder, Phys. Rev. B 49, 6327 (1994).CrossRefADSGoogle Scholar
  34. 32.
    L. L. Boyer and M. J. Mehl, Ferroelectrics 150, 13–24 (1993).CrossRefGoogle Scholar
  35. 33.
    L. L. Boyer, M. J. Mehl, and M. R. Peterson, Ferroelectrics 151, 7 (1994).CrossRefGoogle Scholar
  36. 34.
    P. D. Tepesch, et al., J. Am. Ceram. Soc., in press (1996).Google Scholar
  37. 35.
    A. G. Schlijper, Phys. Rev. A 41, 1175 (1990).CrossRefADSGoogle Scholar
  38. 36.
    A. G. Schlijper and B. Smit, J. Stat. Phys. 56, 247 (1989).MathSciNetCrossRefADSGoogle Scholar
  39. 37.
    Y. Yin and B. B. Argent, Journal of Phase Equilibria 14 588 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • G. Ceder
    • 1
  • P. D. Tepesch
    • 1
  • G. D. Garbulsky
    • 1
  • A. F. Kohan
    • 1
  1. 1.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations