Advertisement

Trichomonas vaginalis Adhesin Proteins Display Molecular Mimicry to Metabolic Enzymes

  • J. A. Engbring
  • J. L. O’Brien
  • J. F. Alderete
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 408)

Abstract

Trichomonas vaginalis is a flagellated protozoan responsible for trichomonosis, one of the most prevalent sexually transmitted diseases. Women are mainly affected and have a broad range of symptomatology; minor irritation to severe inflammation of the vaginal epithelium, accompanied with discharge, itching and abdominal pain have been reported (Krieger et al., 1990). Because of these varied symptoms and the lack of a good clinical test, diagnosis is less than adequate with approximately 50% of women misdiagnosed.

Keywords

Malic Enzyme AP65 Gene Host Cell Surface Vaginal Epithelial Cell TRICHOMONAS VAGINALIS 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alderete, J.F., and Garza, G.E., 1985, Specific nature of Trichomonas vaginalis parasitism of host cell surfaces, Infect. Immun. 50:701–708.PubMedGoogle Scholar
  2. Alderete, J.F., and Garza, G.E., 1987, Trichomonas vaginalis attachment to host cell surfaces and role of cytoadherence in cytotoxicity, Acta Universitatis Carolinae - Biologica. 10:373–380.Google Scholar
  3. Alderete, J.F., and Garza, G.E., 1988, Identification and properties of Trichomonas vaginalis proteins involved in cytoadherence, Infect. Immun. 56:28–33.PubMedGoogle Scholar
  4. Alderete, J.F., and Kasmala, L., 1986, Monoclonal antibody to a major glycoprotein mmunogen mediates differential complement-independent lysis of Trichomonas vaginalis, Infect. Immun. 53:697–699.PubMedGoogle Scholar
  5. Alderete, J.F., Demeš, P., Gombošova, A., Valent, M., Fabušova, M., Janoška, A., Stefanovic´, J., and Arroyo, R., 1988, Specific parasitism of purified vaginal epithelial cells by Trichomonas vaginalis, Infect. Immun. 56:2558–2562.PubMedGoogle Scholar
  6. Alderete, J.F., Kasmala, L., Metcalfe, E., and Garza, G.E., 1986a, Phenotypic variation and diversity among Trichomonas vaginalis isolates and correlation of phenotype with trichomonal virulence determinants, Infect. Immun. 53:285–293.PubMedGoogle Scholar
  7. Alderete, J.F., Newton, E., Dennis, C., and Neale, K.A., 1991a, Antibody in sera of patients infected with Trichomonas vaginalis is to trichomonad proteinases, Genitourin. Med. 67:331–334.PubMedGoogle Scholar
  8. Alderete, J.F., Newton, E., Dennis, C., and Neale, K.A., 1991b, The vagina of women infected with Trichomonas vaginalis has numerous proteinases and antibody to trichomonad proteinases, Genitourin. Med. 67:469–474.PubMedGoogle Scholar
  9. Alderete, J.F., O’Brien, J., Arroyo, R., Engbring, J.A., Musatovova, O., Lopez, O., Lauriano, C., and Nguyen, J., 1995a, Cloning and molecular characterization of two genes encoding adhesion proteins involved in Trichomonas vaginalis, Mol. Microbiol. 17:69–83.PubMedCrossRefGoogle Scholar
  10. Alderete, J.F., Provenzano, D., and Lehker, M.W., 1995b, Iron mediates Trichomonas vaginalis resistance to complement lysis, Microbial Pathogen. 19:93–103.CrossRefGoogle Scholar
  11. Alderete, J.F., Suprun-Brown, L., and Kasmala, L., 1986b, Monoclonal antibody to a major surface glycoprotein immunogen differentiates isolates and subpopulations of Trichomonas vaginalis, Infect. Immun. 52:70–75.PubMedGoogle Scholar
  12. Arroyo, R., and Alderete, J.F., 1989, Trichomonas vaginalis surface proteinase activity is necessary for parasite adherence to epithelial cells, Infect. Immun. 57:2991–2997.PubMedGoogle Scholar
  13. Arroyo, R., and Alderete, J.F., 1995, Two Trichomonas vaginalis surface proteinases bind to host epithelial cells and are related to levels of cytoadherence and cytotoxicity, Arch. Med. Res. 26:279–285.PubMedGoogle Scholar
  14. Arroyo, R., Engbring, J., and Alderete, J.F., 1992, Molecular basis of host epithelial cell recognition by Trichomonas vaginalis, Mol. Microbiol. 6:853–862.PubMedCrossRefGoogle Scholar
  15. Arroyo, R., Engbring, J., Nguyen, J., Musatovova, O., Lopez, O., Lauriano, C., and Alderete, J.F., 1995, Characterization of cDNAs encoding adhesion proteins involved in Trichomonas vaginalis cytoadherence, Arch. Med. Res. 26:361–369.PubMedGoogle Scholar
  16. Arroyo, R., González-Robles, A., Martinez-Palomo, A., and Alderete, J.F., 1993, Signalling of Trichomonas vaginalis for amoeboid transformation and adhesion synthesis follows cytoadherence, Mol. Microbiol. 7:299–309.PubMedCrossRefGoogle Scholar
  17. Bagchi, S., Wise, L.S., Brown, M.L., Bregman, D., Su, J.S., and Rubin, C.S., 1987, Structure and expression of murine malic enzyme mRNA. Differentiation-dependent accumulation of two forms of malic enzyme mRNA in 3T3-L1 cells, J. Biol. Chem. 262:1558–1565PubMedGoogle Scholar
  18. Beachey, E.H., 1989, Bacterial adherence, in Molecular Mechanisms of Microbial Adhesion, (Switalski, L., Hook, M., and Beachey, E.H., eds.), pp. 1–4, Springer-Verlag, New York.CrossRefGoogle Scholar
  19. Bramley, M., 1976, Study of female babies of women entering confinement with vaginal trichomoiasis, Brit. J. Vener. Dis. 52:58–62.Google Scholar
  20. Buck, D., Spencer, M.E., and Guest, J.R., 1985, Primary structure of the succinyl-CoA synthetase of Escherichia coli, Biochemistry 24:6245–6252.PubMedCrossRefGoogle Scholar
  21. Camara, M., Boulnois, G.T., Andrew, P.W., and Mitchell, T.J., 1994, A neuramindase from streptococcus pneumoniae has the features of a surface protein, Infect. Immun. 62:3688- 3695.PubMedGoogle Scholar
  22. Chen, C.-Y.A., and Shyu, A.-B., 1994, Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements, Mol. Cell Biol. 14:8471–8482.PubMedGoogle Scholar
  23. Cohen, M.S., Britigan, B.E., French, M., and Bean, K., 1987, Preliminary observations on lactoferrin secretion in human vaginal mucus: variation during menstrual cycle, evidence of hormonal regulation and implications for infection with Neisseria gonorrhoeae, Am. J. Obstet. Gynecol 157:1122–1125.PubMedGoogle Scholar
  24. Cotch, M.F., Pastorek II, J.G., Nugent, R.P., Yerg, D.E., Martin, D.H., and Eschenbach, D.A., 1991, Demographic and behavioral predictors of Trichomonas vaginalis infection among pregnant women, Obstet. Gynecol. 78:1087–1092.PubMedGoogle Scholar
  25. Dailey, D.C., Chang, T., and Alderete, J.F., 1990, Characterization of Trichomonas vaginalis haemolysis, Parasitol. 101:171–175.CrossRefGoogle Scholar
  26. Damian, R.T., 1989, Molecular mimicry: parasite evasion and host defense, Curr. Top. Microbiol Immunol. 145:101–115.PubMedGoogle Scholar
  27. Goudot-Crozel, V., Caillol, D., Djabali, M., and Dessein, A.J., 1989, The major parasite surface antigen associated with human resistance to schistosomiasis is a 37-kD glyceraldehyde- 3P-dehydrogenase, J. Exp. Med. 170:2065–2080.PubMedCrossRefGoogle Scholar
  28. Holz, G.G., Lindmark, D.G., Beach, D.J., Neale, K.A., Singh, B.N., 1987, Lipids and lipid metabolism of trichomonads, symposium on trichomonads and trichomoniasis, Acta Unversitatis Carolinae-Bi-ologica, Praque, Czechoslovakia.Google Scholar
  29. Hrdy, I., and Müller, M., 1995, Primary structure of the hydrogenosomal malic enzyme of Trichomonas vaginalis and its relationship to homologous enzymes, J. Euk. Micro. 42:593–603.CrossRefGoogle Scholar
  30. Hsu, R.Y., Glynias, M.J., Satterlee, J., Feeney, R., Clarke, A.R., Emery, D.C., Roe, B.A., Wilson, R.K., Goodridge, A.G., and Holbrooks, J.J., 1992, Duck liver malic enzyme expression in Escherichia coli and characterization of the wild-type enzyme and site-directed mutants, Biochem. J. 284:869–876.PubMedGoogle Scholar
  31. Huitorel, P., and Pantaloni, D. 1985, Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP, Eur. J. Biochem. 150:265–269.PubMedCrossRefGoogle Scholar
  32. Joe, A., Murray, C.S., and McBride, B.C., 1994, Nucleotide sequence of a porphyromonas gingivalis gene encoding a surface-associated glutamate dehydrogenase and construction of a glutamate dehydrogenase- deficient isogenic mutant, Infect. Immun. 62:1358–1368.PubMedGoogle Scholar
  33. Kawamoto, R.M., and Caswell, A.H., 1986, Autophosphorylation of glyceraldehyde phosphate dehydrogenase and phosphorylation of protein from skeletal muscle microsomes, Biochemistry. 25:656–661.CrossRefGoogle Scholar
  34. Khoshnan, A., and Alderete, J.F., 1993, Multiple double-stranded RNA segments are associated with virus particles infecting Trichomonas vaginalis, J. Virol. 67:6950–6955.PubMedGoogle Scholar
  35. Khoshnan, A., and Alderete, J.F., 1994, Trichomonas vaginalis with a double-stranded RNA virus has upregulated levels of phenotypically variable immunogen mRNA, J. Virol. 68:4035–4038.PubMedGoogle Scholar
  36. Kislauskis, E.H., and Singer, R.H., 1992, Determinants of mRNA localization, Curr. Opin. Cell. Biol. 4:975–978.PubMedCrossRefGoogle Scholar
  37. Krieger, J.N., Wolner-Hanssen, R, Steven, C., and Holmes, K.K., 1990, Characteristics of Trichomonas vaginalis isolates from women with and without colpitis macularis, J. Infect. Dis. 161:307–311.PubMedCrossRefGoogle Scholar
  38. Kulkarni, G., Cook, P.F., and Harris, B.G., 1993, Cloning and nucleotide sequence of a full- length cDNA encoding Ascaris suum malic enzyme, Arch. Biochem. Biophys. 300:231–237.PubMedCrossRefGoogle Scholar
  39. Laga, M.A., Manoka, A., Kivuvu, M., Malele, B., Tuliza, M., Nzila, N., Goeman, J., Behets, F., Batter, V., Alary, M., Heyward, W.L., Ryder, R.W., Piot, P., 1993, Non-ulcerative sexually transmitted diseases as risk factors for HIV-1 transmission in women: results from a cohort study, AIDS. 7:95–102.PubMedCrossRefGoogle Scholar
  40. Lahti, C.J., Bradley, P.J., and Johnson, P. J., 1994, Molecular characterization of the a-subunit of Trichomonas vaginalis hydrogenosomal succinyl CoA synthetase, Mol. Biochem. Parasitol. 66:309–318.PubMedCrossRefGoogle Scholar
  41. Lahti, C.J., d’Oliveira, C.E., and Johnson, P.J., 1992, Beta-succinyl coenzyme A synthetase from Trichomonas vaginalis is a soluble hydrogenosomal protein with an amino terminal sequence that resembles motochondrial presequences, J. Bacteriol. 174:6822–6830.PubMedGoogle Scholar
  42. Lehker, M., and Alderete, J.F., 1992, Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic proteins, Mol. Microbiol. 6:123–132.PubMedCrossRefGoogle Scholar
  43. Lehker, M., Arroyo, R., and Alderete, J.F., 1991, The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis, J. Exp. Med. 174:311–318.PubMedCrossRefGoogle Scholar
  44. Lehker, M.L., Chang, T.H., Dailey, D.C., and Alderete, J.F., 1990, Specific erythrocyte binding is an additional nutrient acquisition system for Trichomonas vaginalis, J. Exp. Med. 171:2165–2170.PubMedCrossRefGoogle Scholar
  45. Lehker, M.W., and Alderete, J.F., 1991, The regulation by iron of the synthesis of adhesins and cytoadherence levels in the protozoan Trichomonas vaginalis, J. Exp. Med. 174:311–318.PubMedCrossRefGoogle Scholar
  46. Lindmark, D.G., 1983, Failure of trichomonads to convert or retroconvert long chain fatty acids or cholesterol, J. Protozool. 30:5A.Google Scholar
  47. Loeber, G., Infante, A.A., Maurer-Fogy, I., Krystek, E., and Dworkin, M.B., 1991, Human NAD+ -dependent mitochondrial malic enzyme, J. Biol. Chem. 266:3016–3021.PubMedGoogle Scholar
  48. Lottenberg, R., Broder, C.C., Boyle, M.D.P., Kain, S.J., Schroeder, B.L., and Curtis III, R., 1992, Cloning sequence analysis and expression in Escherichia coli of a streptococcal plasmin receptor, J. Bacteriol 174:5204–5210.PubMedGoogle Scholar
  49. Lou, G.X., and Nishimura, J.S., 1991, Site-directed mutagenesis of Escherichia coli succinyl- CoA synthetase, J. Biol. Chem. 266:20781–20785.Google Scholar
  50. Lund, P.G., and Shorb, M.S., 1962, Steroid requirement of trichomonads, J. Protozool. 9:151- 154.PubMedGoogle Scholar
  51. Majumdar, R., Guest, J.R., and Bridger, W.A., 1991, Functional consequences of substitution of the active site (phospho) histidine residue of Escherichia coli succinyl-CoA synthetase, Biochim. Biophys. Acta. 1076:86–90.PubMedCrossRefGoogle Scholar
  52. Masson, P.L., Heremans, J.F., and Dive, C.H., 1966, An iron-binding protein common to many external excretions, Clin. Chim. Acta. 14:735–739.CrossRefGoogle Scholar
  53. McCarthy, J.E.G., and Kollmuss, H., 1995, Cytoplasmic mRNA-protein interactions in eukaryotic gene expression, Trends Biochem. Sci. 20:191–197.PubMedCrossRefGoogle Scholar
  54. Meyer-Siegler, K., Mauro, D.J., Seal, G., Wurzer, J., DeRiel, J.K., and Sirover, M.M., 1991, A human nuclear uracil DNA glycosylase is the 37 kDa subunit of glyceraldehyde-3- phosphate dehydrogenase Proc. Natl. Acad. Sci. USA 88:8460–8464.PubMedCrossRefGoogle Scholar
  55. Miles, L.A., Dahlberg, C.M., Plescia, J., Felez, J., Kato, K., and Plow, E.F., 1991, Role of cell- surface lysines in plasminogen binding to cells: identification of α-enalase as a candidate plasminogen receptor, Biochemistry. 30:1682–1691.PubMedCrossRefGoogle Scholar
  56. Minkoff, H., Grunebaum, A.N., Schwarz, R.H., Feldman, J., Cummings, M., Crobleholme, W., Clark, L., Pringle, G., and McCormack, W.M., 1984, Risk Factors for prematurity and premature rupture of membranes: a prospective study of the vaginal flora in pregnancy, Am. J. Obstet. Gynecol. 150:965 –972.PubMedGoogle Scholar
  57. Müller, M., Meingassner, J.G., Miller, M.A., and Ledger, W.J., 1980, Three metronidazole- resistant strains of Trichomonas vaginalis from the U.S.A., Am. J. Obstet. Gynecol. 138:808–812.PubMedGoogle Scholar
  58. Neale, K.A., and Alderete, J.F., 1990, Analysis of the proteinases of representative Trichomonas vaginalis isolates, Infect. Immun. 58:157–162.PubMedGoogle Scholar
  59. Nzila, N., Laga, M., Thiam, M.A., Mayimona, K., Edidi, B., Van Dyck, E., Behets, F., Hassig, S., Nelson, A., Mokwa, K., Ashley, R.L., Piot, P., and Ryder, R.W., 1991, HIV and other sexually transmitted diseases among female prostitutes in Kinshasa, AIDS. 5:715–721.PubMedCrossRefGoogle Scholar
  60. O’Brien, J.L., Lauriano, C.M., and Alderete, J.F., 1996, Molecular characterization of a third AP65 adhesin gene of Trichomonas vaginalis, Microbial Pathogen. In press.Google Scholar
  61. Pancholi, V., and Fischetti, V.A., 1992, A major surface protein on group A streptococci is a glyceraldehyde-3-phosphate-dehydrogenase with multiple binding activity, J. Exp. Med. 176:415–426.PubMedCrossRefGoogle Scholar
  62. Pancholi, V., and Fischetti, V.A., 1993, Glyceraldehyde-3-phosphate dehydrogenase on the surface of group A streptococci is also an ADP-ribosylating enzyme, Proc. Natl Acad. Sci. USA 90:8154–8158.PubMedCrossRefGoogle Scholar
  63. Peltz, S.W., and Jacobson, A., 1992, mRNA stability: in trans-it, Curr. Opin. Cell Biol. 4:979- 983.PubMedCrossRefGoogle Scholar
  64. Peterson, K.M., and Alderete, J.F., 1984a, Selective acquisition of plasma proteins by Trichomonas vaginalis and human lipoproteins as a growth requirement by this species, Mo I Biochem. Parasitol. 12:37–48.PubMedCrossRefGoogle Scholar
  65. Peterson, K.M., and Alderete, J.F., 1984b, Trichomonas vaginalis is dependent on uptake and degradation of human low density lipoproteins, J. Exp. Med. 160:1261–1271.PubMedCrossRefGoogle Scholar
  66. Peterson, K.M., and Alderete, J.F., 1984c, Iron uptake and increased intracellular enzyme activity follows host lactoferrin binding by Trichomonas vaginalis receptors, J. Exp. Med. 160:398–410.PubMedCrossRefGoogle Scholar
  67. Piatigorsky, J., and Wistow, G.J., 1989, Enzyme/crystallins: gene sharing as an evolutionary strategy, Cell 57:197–199.PubMedCrossRefGoogle Scholar
  68. Poulouse, A.J., and Kolattukudy, P.E., 1983, Sequence of a tryptic peptide from the NADPH binding site of the enoyl reductase domain of fatty acid synthase, Arch. Biochem. Biophys. 220:652–656.CrossRefGoogle Scholar
  69. Provenzano, D., and Alderete, J.F., 1995, Analysis of human immunoglobulin-degrading cysteine proteinases of Trichomonas vaginalis, Infect. Immun. 63:3388–3395.PubMedGoogle Scholar
  70. Quon, D.V.K., Delgadillo, M.G., Khachi, A., Smale, S.T., and Johnson, P.J., 1994, Similarity between a ubiquitous promoter element in an ancient eukaryote and mammalian initiator elements, Proc. Natl Acad. Sci. 91:4579–4583.PubMedCrossRefGoogle Scholar
  71. Read, J.S., and Klebanoff, M.A., 1993, Sexual intercourse during pregnancy and preterm delivery: effects of vaginal microorganisms, Am. J. Obstet. Gynecol. 168:514–519.PubMedGoogle Scholar
  72. Roitman, I., Heyworth, P.G., and Gutteridge, W.E., 1978, Lipid synthesis by Trichomonas vaginalis, Ann. Trop. Med. Parasitol. 72:583–585.PubMedGoogle Scholar
  73. Rothermel, B.A., and Nelson, T., 1989, Primary structure of the maize NADP-dependent malic enzyme, J. Biol Chem. 264:19587–19592.PubMedGoogle Scholar
  74. Satterlee, J., and Hsu, R.Y., 1991, Duck liver malic enzyme: sequence of a tryptic peptide containing one cysteine residue labelled by the substrate analog bromopyruvate, Biochim. Biophys. Acta. 1079:247–252.PubMedCrossRefGoogle Scholar
  75. Scrutton, N.S., Berry, A., and Perham, R.N., 1990, Redesign of the coenzyme specificity of a dehydrogenase by protein engineering, Nature 343:38–43.PubMedCrossRefGoogle Scholar
  76. Sokurenko, E.V., Courtney, H.S., Ohman, D.E., Klemm, P., and Hasty, D.L., 1994, FimH family of type 1 fimbrial adhesins: functional heterogeneity due to minor sequence variations among fimH genes, J. Bacteriol. 176:748–755.PubMedGoogle Scholar
  77. Stevens-Simon, C., Jamison, J., McGregor, J.A, and Douglas, J.M., 1994, Racial variation in vaginal pH among healthy sexually active adolescents, Sex. Trans. Dis. 21:168–172.CrossRefGoogle Scholar
  78. Ter Kuile, B.H., 1994, Adaptation of the carbon metabolism of Trichomonas vaginalis to the nature and availability of carbon source, Microbiol. 140:2503–2510.CrossRefGoogle Scholar
  79. Vacca-Smith, A.M., Jones, C.A., Levine, M.J., and Stinson, M.W., 1994, Glucosyltransferase mediates adhesion of streptococcus gordonii to human endothelial cells in vitro, Infect. Immun. 62:2187–2194.PubMedGoogle Scholar
  80. von Heijne, G., Steppuhn, J., and Herrmann, R.G., 1989, Domain structure of mitochondrial and chloroplast targeting peptides, Eur. J. Biochem. 180:535–545.CrossRefGoogle Scholar
  81. Wang, A., Wang, C.C., and Alderete, J.F., 1987, Trichomonas vaginalis phenotypic variation occurs only among trichomonads infected with the double-stranded RNA Virus, J. Exp. Med. 166:142–150.PubMedCrossRefGoogle Scholar
  82. Wei, C.H., Chou, W.Y., Huang, S.H., Lin, C.C., and Chang, G.G., 1994, Affinity cleavage at the putative metal-binding site of pigeon liver malic enzyme by the Fe2+-ascorbate system, Biochemistry 33:7931– 7936.PubMedCrossRefGoogle Scholar
  83. Wierenga, R.K., DeMaeyer, M.C.H., and Hoi, W.G.J., 1985, Interaction of pyrophosphate moities with a-helixes in dinucleotide-binding proteins, Biochemistry 24:1346–1357.CrossRefGoogle Scholar
  84. Wistow, G., 1993, Lens crystallins: gene recruitment and evolutionary dynamism, Trends Biochem. Sci. 18:301–306.PubMedCrossRefGoogle Scholar
  85. Wistow, G., and Piatigorsky, J., 1987, Recruitment of enzymes as lens structural proteins, Science 236:1554- 1555.PubMedCrossRefGoogle Scholar
  86. Zubiaga, A.M., Belasco, J.G., and Greenberg, M.E., 1995, The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation, Mol. Cell. Biol. 15:2219– 2230.PubMedGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • J. A. Engbring
    • 1
  • J. L. O’Brien
    • 1
  • J. F. Alderete
    • 1
  1. 1.Department of MicrobiologyThe University of Texas Health Science CenterSan AntonioUSA

Personalised recommendations