Skip to main content

The Effect of Novel Opioids on Natural Killer Activity and Tumor Surveillance in Vivo

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 402))

Abstract

Morphine and fentanyl (oral or transdermal administration) are used widely to treat pain in a diverse population of patients including those with cancer.1–3 However, both of these compounds are potently immunosuppressive particularly with regard to cell-mediated immunity. Relative to cytolytic effector cells, the acute administration of morphine (25.0 mg/kg, s.c.) has been shown to suppress natural killer (NK) activity.4 The suppression is reportedly mediated by central (brain) pathways5 located in the periaqueductal gray matter of the mesencephalon6 that involve both μ-opioid receptors and adrenergic-associated processes.7,8 Central activation of the adrenergic system as well as actions at opioid receptors may ultimately stimulate the hypothalamic pituitary adrenal axis to release adrenocorticotropin hormone (ACTH) which can then act on the adrenals to secrete corticosterone which has recently been implicated in acute morphine-induced suppression of NK activity.9

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanks, GW, RG, Twycross, & JM Bliss. 1987. Controlled release of morphine tablets: a double-blind trial in patients with advanced cancer. Anaesthesia 42:840–844.

    Article  PubMed  CAS  Google Scholar 

  2. Portenoy, RK, MA Southam, SK Gupta, J Lapin, M Layman, CE Inturrisi, & KM Foley. 1993. Transdermal fentanyl for cancer pain. Anesthesiology 78:36–43.

    Article  PubMed  CAS  Google Scholar 

  3. Twycross, TG. 1982. Morphine and diamorphine in the terminally ill patient. Acta. Anaesth. 74S:128–134.

    Article  Google Scholar 

  4. Bayer, BM, S Daussin, M Hernandez, & L Irvin. 1990. Morphine inhibition of lymphocyte activity is mediated by an opioid dependent mechanism. Neuropharrnacol. 29:369–374.

    Article  CAS  Google Scholar 

  5. Shavit, Y, A Depaulis, FC Martin, GW Terman, RN Pechnick, CJ Zane, RP Gale, & JC Liebeskind. 1986. Involvement of brain opiate receptors in the immune-suppressive effect of morphine. Proc. Natl. Acad. Sci. USA. 83:7114–7117.

    Article  PubMed  CAS  Google Scholar 

  6. Weber, RJ & A Pert. 1989. The periaqueductal gray matter mediates opiate-induced immunosuppression. Science 245:188–190.

    Article  PubMed  CAS  Google Scholar 

  7. Carr, DJJ, BM Gebhardt, & D Paul. 1993. Alpha adrenergic and mu-2 opioid receptors are involved in morphine-induced skuppression of splenocyte natural killer activity. J. Pharmacol. Exp. Ther. 264:1179–1186.

    PubMed  CAS  Google Scholar 

  8. Carr, DJJ, S Mayo, BM Gebhardt, & J Porter. 1994. Central a-adrenergic involvement in morphine-mediated suppression of splenic natural killer activity. J. Neuroimmunol. 53:53–63.

    Article  PubMed  CAS  Google Scholar 

  9. Freier, DO & BA Fuchs. 1994. A mechanism of action for morphine-induced immunosuppression: Corticosterone mediates morphine-induced suppression of natural killer activity. J. Pharmacol. Exp. Thee 270:1127–1133.

    CAS  Google Scholar 

  10. Garni-Wagner, BA, A Purohit, PA Mathew, M Bennett, & V Kumar. 1993. A novel function-associated molecule related to non-MHC-restricted cytotoxicity mediated by activated natural killer cells and T cells. J. Immunol. 151:60–70.

    PubMed  CAS  Google Scholar 

  11. Novick, DM, M Ochshorn, V Ghali, TS Croxson, WD Mercern, N Chiorazzi, & MJ Kreek. 1989. Natural killer cell activity and lymphocyte subsets in parenteral heroin abusers and long-term methadone maintenance patients. J. Pharmacol. Exp. Ther, 250:606–610.

    PubMed  CAS  Google Scholar 

  12. Carr, DJJ & CP France. 1993. Immune alterations in morphine-treated rhesus monkeys. J. Pharmacol. Exp. Then. 267:9–15.

    CAS  Google Scholar 

  13. Cookson, RF & GDW Towse. 1981. The search for new analgesics. Clin. Res. Rev. 1:219–225.

    CAS  Google Scholar 

  14. Marshall, BE & DE Longnecker. 1990. General anesthetics. In The Pharmacolgical Basis of Therapeutics (eds. LS Goodman & A Gilman ), MacMillan, New York, pp. 285–297.

    Google Scholar 

  15. Beilin, B, FC Martin, Y Shavit, RP Gale, & JC Liebeskind. 1989. Suppression of natural killer cell activity by high-dose narcotic anesthesia in rats. Brain Behavior Immun. 3:129–137.

    Article  CAS  Google Scholar 

  16. Beilin, B, Y Shavit, S Cohn, & E Kedar. 1992. Narcotic-induced suppression of natural killer cell activity in ventilated and nonventilated rats. Clin. Immun. Imrnrropath. 64:173–176.

    Article  CAS  Google Scholar 

  17. Bailey, PL, GB Streisand, KA East, TD East, S Isern, TW Hansen, EFM Posthuma, FW Rosendaal, NL Pace, & TH Stanley. 1990. Differences in magnitude and duration of opioid-induced respiratory depression and analgesia with fentanyl and sufentanil. Anesth. Analg. 70:8–15.

    Article  PubMed  CAS  Google Scholar 

  18. Poste, G & IJ Fidler. 1980. The pathogenesis of cancer metastasis. Nature (London) 283:139–146.

    Article  CAS  Google Scholar 

  19. Herberman, RB & JR Ortaldo. 1981. Natural killer cells: their role in defenses against disease. Science 214:24–30.

    Article  PubMed  CAS  Google Scholar 

  20. Lafreniere R, SA Rosenberg. 1985. Adoptive immunotherapy of murine hepatic with lymphokine activated killer (LAK) cells and recombinant interleukin 2 (RIL2) can mediate the regression of both immunogenic and nonimmunogenic sarcomas and an adenocarcinoma. J. Immunol. 135:4273–4280.

    PubMed  CAS  Google Scholar 

  21. Schwarz, RE, NL Vujanovic, JC Hiserodt. 1986. Enhanced antimetastatic activity of lymphokine-activated killer cells purified and expanded by their adherence to plastic. Cancer Res. 49:1441–1446.

    Google Scholar 

  22. Ishikawa, M, K Tanno, A Kamo, Y Takayanagi, & K-I Sasaki. 1993. Enhancement of tumor growth by morphine and its possible mechanism in mice. Biol. Pharm. Bull. 16:762–766.

    Article  PubMed  CAS  Google Scholar 

  23. Reubi, JC. 1985. Central nervous system-mediated growth inhibition of a rat prostate carcinoma by an opioid. J. Endocrinol. 107:247–250.

    Article  PubMed  CAS  Google Scholar 

  24. Maneckjee, R, JD Minna. 1992. Nonconventional opioid binding sites mediate growth inhibitory effects of methadone on human lung cancer cells. Proc. Natl. Acad. Sci. USA. 89:1169–1173.

    Article  PubMed  CAS  Google Scholar 

  25. Provinciali, M, G Di Stefano, W Raffaeli, G Pari, F Desiderio, N Fabri. 1991. Evaluation of NK and LAK cell activities in neoplastic patients during treatment with morphine. Intern. J. Neurosci. 59:127–133.

    Article  CAS  Google Scholar 

  26. Yeager, MP, TA Colacchio. 1991. Effect of morphine on growth of metastatic colon cancer in vivo. Arch. Surg. 126:454–456.

    PubMed  CAS  Google Scholar 

  27. Can, DJJ, LR Gerak, CP France. 1994. Naltrexone antagonizes the analgesic and immunosuppressive effects of morphine in mice. J. Pharmacol. Exp. Ther. 269:693–698.

    Google Scholar 

  28. Pasternak, GW. 1993. Pharmacological mechanisms of opioid analgesics. Clin. Neuropharmacol. 16:1–18.

    Article  PubMed  CAS  Google Scholar 

  29. Page, GG, S Ben-Eliyahu, JC Liebeskind. 1994. The role of LGL/NK cells in surgery-induced promotion of metastasis and its attenuation by morphine. Brain Behavior Immun. 8:241–250.

    Article  CAS  Google Scholar 

  30. Bagley, JR, LV Kudzma, NL Lalinde, JA Colapret, B-S Huang, B-S Lin, TP Jerussi, MJ Benvenga, BM Doorley, MH Ossipov, TC Spaulding, HK Spencer. 1991. Evolution of the 4-anilidopiperidine class of opioid analgesics. Med. Res. Rev. 11:402–436.

    Article  Google Scholar 

  31. France, CP, G Winger, R Medzihradsky, MR Seggel, KC Rice, JH Woods. 1992. Mirfentanil: pharmacological profile of a novel fentanyl derivative with opioid and nonopioid effects. J. Pharmacol. Exp. Thee. 258:502–510.

    Google Scholar 

  32. France, CP, G Winger, R Medzihradsky, MR Seggel, KC Rice, JH Woods. 1992. Mirfentanil: pharmacological profile of a novel fentanyl derivative with opioid and nonopioid effects. J. Pharmacol. Exp. Thee. 258:502–510.

    Google Scholar 

  33. Baker, ML, LL Brockunier, JR Bagley, CP France, DJJ Can. 1995. Fentanyl-related 4-heteroanilido piperidine OHM3295 augments splenic natural killer activity and induces analgesia through opioid receptor pathways. J. Pharmacol. Exp. Thee. 274:1285–1292.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Carr, D.J.J., Scott, M., Brockunier, L.L., Bagely, J.R., France, C.P. (1996). The Effect of Novel Opioids on Natural Killer Activity and Tumor Surveillance in Vivo . In: Friedman, H., Eisenstein, T.K., Madden, J., Sharp, B.M. (eds) AIDS, Drugs of Abuse, and the Neuroimmune Axis. Advances in Experimental Medicine and Biology, vol 402. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0407-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0407-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8038-2

  • Online ISBN: 978-1-4613-0407-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics