Advertisement

Dephasing of Excitons in Multiple Quantum Well Bragg Structures

  • M. Hübner
  • E. J. Mayer
  • N. Pelekanos
  • J. Kuhl
  • T. Stroucken
  • A. Knorr
  • P. Thomas
  • S. W. Koch
  • R. Hey
  • K. Ploog
  • Y. Merle D’Aubigne
  • A. Wasiela
  • H. Mariette

Abstract

The recent progress in the development of ultrashort laser pulses enables observations of the coherent dynamics of excitons in quantum wells (QW) with less than 100 fs time resolution by transient degenerate-four-wave-mixing (DFWM). Such investigations have attracted rapidly growing attention as a powerful technique to explore nonlinear processes in semiconductors which may have enormous potential for future semiconductor device applications. Only very recently the role of many-body exciton-exciton interaction effects for the magnitude of the nonlinear optical response as well as for the optical dephasing rate has been studied in detail. So far, the discussion has been confined, however, to the coupling of excitons via Coulomb fields1. For GaAs multiple QW (MQW) samples, this interaction mechanism seems to be negligible for excitons excited in different wells if the barrier thickness exceeds values of 10–15 nm so that tunneling processes of carriers between the different wells can be excluded.

Keywords

Quantum Well Ultrashort Laser Pulse Excitation Density Nonlinear Optical Response Radiative Contribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    see e.g.: K. Bott et al., Phys Rev. B 48, 17418 (1993); E.J. Mayer et al., Phys. Rev. B 50, 14733 (1994), E. J. Mayer et al., Phys. Rev B 51, 10909 (1995)Google Scholar
  2. 2.
    Y. Merle d’Aubigne, A Wasiela, H. Mariette and A Shen, 22nd Internat. Conference on “The Physics of Semiconductors”, Vol.2 pg. 1201, ed. D.J. Lockwood, World Scientific Singapore. 1995Google Scholar
  3. 3.
    E.L. Ivchenko and A.I. Nesvizhskii, and S. Jorda, Phys. Sol. State 36,1156 (1994) and Superlattices and Microstructures 16, 17 (1994)Google Scholar
  4. 4.
    T. Stroucken et al., Phys. Rev. Lett. 74, 2391 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    A. Honold, L. Schultheis, J. Kuhl, and C.W. Tu, Appl. Phys. Lett. 52, 2105 (1988)ADSCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Hübner
    • 1
  • E. J. Mayer
    • 1
  • N. Pelekanos
    • 1
  • J. Kuhl
  • T. Stroucken
    • 2
  • A. Knorr
    • 2
  • P. Thomas
    • 2
  • S. W. Koch
    • 2
  • R. Hey
    • 3
  • K. Ploog
    • 3
  • Y. Merle D’Aubigne
    • 4
  • A. Wasiela
    • 4
  • H. Mariette
    • 4
  1. 1.Max-Planck-Institut für FestkörperforschungStuttgartGermany
  2. 2.Fachbereich Physik und Zentrum für MaterialwissenschaftenPhilipps UniversityMarburgGermany
  3. 3.Paul Drude Institut für FestkörperelektronikBerlinGermany
  4. 4.Laboratoire de Spectrometrie PhysiqueUniversity J. Fourier et CNRSGrenobleFrance

Personalised recommendations