Cancer Chemoprevention by Polyphenols in Green Tea and Artichoke

  • Rajesh Agarwal
  • Hasan Mukhtar
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 401)

Abstract

Cancer is a major disease accounting for over 7 million deaths per year worldwide.1 Though recent advances in cancer diagnosis, its early detection, and therapy have improved the quality of life for cancer patients, there is little, if any, effect on the mortality rates for most cancers. To reduce cancer related deaths, four strategies are possible. These include: early diagnosis and intervention, improved management of non-localized cancers, successful treatment of localized cancers, and prevention of cancer occurrence in the first place. Development of successful approaches to cancer prevention appears the most practical strategy for reduction in cancer related deaths. One approach is “chemoprevention” in which the progress of this disease can be slowed, completely blocked or reversed by the administration of one or more naturally occurring or synthetic chemical agents. It is increasingly appreciated that an ideal cancer chemopreventive agent for human use must fulfill the following criteria: little or no toxic effects, high efficacy against multiple sites, capability of oral consumption, a known mechanism of action, low cost, and human acceptability. In recent years, considerable efforts have been directed to identify agents that may have the ability to inhibit, retard or reverse one or more stages of multistage carcinogenesis, which is comprised of initiation, promotion and progression.2–4 Since cancer usually evolves in a prolonged manner, agents that inhibit or retard one or more of these stages could affect the overall cancer induction. In this context, a few naturally occurring micronutrients present in human diets have been found to possess potent cancer chemopreventive effects.5-11

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.N. Ames, L.S. Gold, W.C Willett, The causes and prevention of cancer, Proc Natl Acad Sci USA 92: 5258–5265 (1995).CrossRefGoogle Scholar
  2. 2.
    J. DiGiovanni, Multistage carcinogenesis in mouse skin, Pharmac Ther 54: 63–128 (1992).CrossRefGoogle Scholar
  3. 3.
    R. Agarwal, H. Mukhtar, Cutaneous chemical carcinogenesis. In Pharmacology of the skin. H. Mukhtar (Ed.), CRC Press, Boca Raton, pp. 371–387, 1991.Google Scholar
  4. 4.
    H.C. Pitot, Y.P. Dragan, Facts and theories concerning the mechanisms of carcinogenesis, FASEB J 5: 2280–2286(1991).Google Scholar
  5. 5.
    G.D. Stoner, H. Mukhtar, Polyphenols as cancer chemopreventive agents, J Cellular Biochem (Suppl) 22: 169–180(1995)CrossRefGoogle Scholar
  6. 6.
    C.W. Boone, G.J. Kelloff, W.E. Malone, Identification of candidate cancer chemopreventive agents and their evaluation in animal models and human clinical trials, Cancer Res 50: 2–9 (1990).Google Scholar
  7. 7.
    M.A. Morse, G.D. Stoner, Cancer chemoprevention: Principles and prospects, Carcinogenesis 14: 1737–1746 (1993).CrossRefGoogle Scholar
  8. 8.
    H. Sumiyoshi, M.J. Wargovich, Chemoprevention of 1, 2-dimethylhydrazine-induced colon cancer in mice by naturally occurring organosulfur compounds, Cancer Res 50: 5084–5087 (1990).Google Scholar
  9. 9.
    H. Wei, L. Tye, E. Bresnick, D.F. Birt, Inhibitory effect of apigenin, a plant flavonoid, on epidermal ornithine decarboxylase and skin tumor promotion in mice, Cancer Res 50: 499–502 (1990).Google Scholar
  10. 10.
    H.F. Stich, The beneficial and hazardous effects of simple phenolic compounds, Mutation Res 259: 307–324 (1991).CrossRefGoogle Scholar
  11. 11.
    L.W. Wattenberg, Inhibition of carcinogenesis by naturally occurring and synthetic compounds. In Antimutagenesis and Anticarcinogenesis, Mechanisms II. Y. Kuroda, D.M. Shankel and M.D. Waters (Eds.), Plenum Publishing Corp, New York, pp. 155–166, 1990.Google Scholar
  12. 12.
    H. Mukhtar, Z.Y. Wang, S.K. Katiyar, R. Agarwal, Tea components: Antimutagenic and anticarcinogenic effects, Preventive Medicine 21: 351–360 (1992).CrossRefGoogle Scholar
  13. 13.
    H. Mukhtar, S.K. Katiyar, R. Agarwal, Green tea and skin - anticarcinogenic effects, J Invest Dermatol 102: 3–7 (1994).CrossRefGoogle Scholar
  14. 14.
    C.S. Yang, Z.Y. Wang, Tea and cancer, J Natl Cancer Insti 85: 1038–1049 (1993).CrossRefGoogle Scholar
  15. 15.
    T. Yaminishi, I. Tomita, Proceedings of the International Symposium on Tea Sciences, 1992.Google Scholar
  16. 16.
    T. Kada, K. Kaneko, S. Matsuzaki, T. Matsuzaki, Y Hara, Detection and chemical identification of natural bio-antimutagens. A case of green tea factor, Mutation Res 150: 127–132 (1985).Google Scholar
  17. 17.
    S.J. Cheng, C.T. Ho, H.Z. Lou, Y.D. Bao, Y.Z. Jian, M.H. Li, Y.N. Gao, G.F. Zhu, J.F. Bai, S.P. Guo, X.Q. Li, A preliminary study on the antimutagenicity of green tea antioxidants, Acta Biol Exp Sinica 19: 427–431 (1986).Google Scholar
  18. 18.
    R.R. Mohan, S.G. Khan, R. Agarwal, H. Mukhtar, Testosterone induces ornithine decarboxylase (ODC) activity and mRNA expression in human prostate carcinoma cell line LNCaP: inhibition by green tea. Proc Amer Assoc Cancer Res 36: 274 (1995).Google Scholar
  19. 19.
    RT. Strickland, Tumor induction in Senear mice in response to ultraviolet radiation, Carcinogenesis 3: 1487–1489 (1982).CrossRefGoogle Scholar
  20. 20.
    H. Mukhtar, (Ed.) Skin Cancer: Mechanisms and Human Relevance, CRC Press, Boca Raton, FL, 1995.Google Scholar
  21. 21.
    A. H. Conney, Induction of microsomal enzymes by foreign chemicals and carcinogenesis by polycyclic aromatic hydrocarbons: GHA Clowes Memorial Lecture, Cancer Res 42: 4875–4917 (1982).Google Scholar
  22. 22.
    H.N. Ananthaswamy, W.E. Pierceall, Molecular mechanisms of ultraviolet radiation carcinogenesis. Photochem Photobiol 52: 1119–1136 (1990).CrossRefGoogle Scholar
  23. 23.
    A. J. Nataraj, J. C. Trent II, H.N. Ananthaswamy, p53 gene mutations and photocarcinogenesis, Photochem Photobiol 62: 218–230 (1995).CrossRefGoogle Scholar
  24. 24.
    R. Agarwal, H. Mukhtar, Oxidative stress in skin chemical carcinogenesis. In Oxidative stress in dermatology (Fuchs, J. and Packer, L. eds), Marcel Dekker, Inc, New York, NY, pp 207–241, 1993.Google Scholar
  25. 25.
    S.G. Khan, R.R. Mohan, S.K. Katiyar, G.S. Wood, D.R. Bickers, H. Mukhtar, R. Agarwal, Mutations in ras oncogenes are rare events in ultraviolet B radiation induced mouse skin tumorigenesis, Mol carcinogenesis, In Press, 1995.Google Scholar
  26. 26.
    J.P.G. Volpe, L. Wang, J.H. Epstein, T.J. Slaga, J.E. Cleaver, Absence of ras mutations in UV-induced skin tumors in mice. Proc Am Assoc Cancer Res 36: 187 (1995).Google Scholar
  27. 27.
    Z.Y Wang, M. Das, D.R. Bickers, H. Mukhtar, Interaction of epicatechins derived from green tea with rat hepatic cytochrome P-450, DrugMetab Dispos 16: 98–103 (1988).Google Scholar
  28. 28.
    Z.Y Wang, W.A. Khan, D.R. Bickers, H. Mukhtar, Protection against polycyclic aromatic hydrocarbon-induced skin tumor initiation in mice by green tea polyphenols. Carcinogenesis 10: 411–415 (1989).CrossRefGoogle Scholar
  29. 29.
    Z.Y. Wang, S.J. Cheng, Z.C. Zhou, M. Athar, W.A. Khan, D.R. Bickers, H. Mukhtar, Antimutagenic activity of green tea polyphenols. Mutation Res 223: 273–289 (1989).CrossRefGoogle Scholar
  30. 30.
    S.G. Khan, S.K. Katiyar, R. Agarwal, H. Mukhtar, Enhancement of antioxidant and phase II enzymes by oral feeding of green tea polyphenols in drinking water to SKH-1 hairless mice: possible role in cancer chemoprevention, Cancer Res 52: 4050–4052 (1992).Google Scholar
  31. 31.
    Q. Liu, Y Wang, K.A. Crist, M.T. Huang, A. Conney, M. You, Analysis of p53 and H-ras mutations in UV- and UV-green tea-induced tumorigenesis in the skin of SKH-1 mice. Proc Am Assoc Cancer Res 36: 591 (1995).Google Scholar
  32. 32.
    Z. Y Wang, R. Agarwal, D. R. Bickers, H. Mukhtar, Protection against ultraviolet B radiation-induced photocarcinogenesis in hairless mice by green tea polyphenols, Carcinogenesis 12: 1527–1530 (1991).CrossRefGoogle Scholar
  33. 33.
    M.-T. Huang, C.-T. Ho, Z.Y. Wang, T. Ferraro, T. Finnegan-Olive, Y.-R. Lou, J.M. Mitchell, J.D. Laskin, H. Newmark, C.S. Yang, A.H. Conney, Inhibitory effect of topical application of a green tea polyphenol fraction on tumor initiation and promotion in mouse skin, Carcinogenesis 13: 947–954 (1992).CrossRefGoogle Scholar
  34. 34.
    W.A. Khan, Z.Y. Wang, M. Athar, D.R. Bickers, H. Mukhtar, Inhibition of the skin tumorigenicity of (+)-7ß, 8α-dihydroxy-9α, 10 α -epoxy-7, 8, 9, 10-etrahydrobenzo(a)pyrene by tannic acid, green tea polyphenols and quercetin in SENCAR mice, Cancer Lett 42: 7–12 (1988).CrossRefGoogle Scholar
  35. 35.
    S.K. Katiyar, R. Agarwal, Z.Y. Wang, A.K. Bhatia, H. Mukhtar,(-)-Epigallocatechin-3-gallate in Camellia sinensis leaves from Himalayan region of Sikkim: inhibitory effects against biochemical events and tumor initiation in SENCAR mouse skin, Nutr Cancer 18: 73–83 (1992).CrossRefGoogle Scholar
  36. 36.
    Z. Y. Wang, M.-T. Huang, T. Ferraro, C.-Q. Wong, Y.-R. Lou, M. Iatropoulos, C. S. Yang, A. H. Conney, Inhibitory effect of green tea in the drinking water on tumorigenesis by ultraviolet light and 12-O-tetrade-canoylphorbol-13-acetate in the skin of SKH-1 mice, Cancer Res 52: 1162–1170 (1992).Google Scholar
  37. 37.
    J.-P. Perchellet, E. M. Perchellet, Antioxidants and multistage carcinogenesis in mouse skin, Free Radical Biol Med 1: 377–408 (1989).CrossRefGoogle Scholar
  38. 38.
    H. U. Gali, E. M. Perchellet, J.-P. Perchellet, Inhibition of tumor promoter-induced ornithine decarboxy lase activity by tannic acid and other polyphenols in mouse epidermis in vivo, Cancer Res 51: 2820–2825 (1991).Google Scholar
  39. 39.
    S. K. Katiyar, R. Agarwal, G. S. Wood, H. Mukhtar, Inhibition of 12-O-tetradecanoylphorbol-13-acetatecaused tumor promotion in 7, 12-imethylbenz[a]anthracene-initiated SENCAR mouse skin by a polyphenolic fraction isolated from green tea, Cancer Res 52: 6890–6897 (1992).Google Scholar
  40. 40.
    S. K. Katiyar, R. Agarwal, S. Ekker, G. S. Wood, H. Mukhtar, Protection against 12-O-tetradecanoylphor bol-13-acetate-caused inflammation in SENCAR mouse ear skin by polyphenols fraction isolated from green tea, Carcinogenesis 14: 361–365 (1993).CrossRefGoogle Scholar
  41. 41.
    R. Agarwal, S. K. Katiyar, S. I. A. Zaidi, H. Mukhtar, Inhibition of tumor promoter-caused induction of ornithine decarboxylase activity in SENCAR mice by polyphenols fraction isolated from green tea and its individual epicatechin derivatives, Cancer Res 52: 3582–3588 (1992).Google Scholar
  42. 42.
    S. K. Katiyar, C. O. Rupp, N.J. Korman, R. Agarwal, H. Mukhtar, Inhibition of 12-O-tetradecanoylphor bol-13-acetate and other skin tumor promoter-caused induction of epidermal interleukin-1α mRNA and protein expression in SENCAR mice by green tea polyphenols, J Invest Dermatol In Press, 1995.Google Scholar
  43. 43.
    R. Agarwal, S. K. Katiyar, S. G. Khan, H. Mukhtar, Protection against ultraviolet B radiation-induced effects in the skin of SKH-1 hairless mice by a polyphenolic fraction isolated from green tea, Photochem Photobiol 58: 695–700 (1993).CrossRefGoogle Scholar
  44. 44.
    S. Yoshizawa, T. Horiuchi, H. Fujiki, T. Yoshida, T. Okuda,T. Sugimura, Antitumor Promoting Activity of (-)-Epigallocatechin Gallate, the Main Constituent of “Tannin” in Green Tea, Phytotherapy Res 1: 44–47(1987).Google Scholar
  45. 45.
    S. K. Katiyar, R. Agarwal, H. Mukhtar, Inhibition of both stage I and stage II tumor promotion in SENCAR mice by a polyphenolic fraction isolated from green tea: Inhibition depends on the duration of polyphenols treatment, Carcinogenesis 14: 2641–2643 (1993).CrossRefGoogle Scholar
  46. 46.
    Z. Y. Wang, M.-T. Huang, Y.-R. Lou, J.-G. Xie, K. R. Reuhl, H.L. Newmark, C.-T. Ho, C. S. Yang, A. H. Conney, Inhibitory effects of black tea, green tea, decaffeinated black tea, and decaffeinated green tea on ultraviolet B light-induced skin carcinogenesis in 7, 12-dimethylbenz(a)anthracene-initiated SKH-1 mice, Cancer Res 54: 3428–3435 (1994).Google Scholar
  47. 47.
    S. K. Katiyar, R. Agarwal, H. Mukhtar, Protection against malignant conversion of chemically-induced benign skin papillomas to squamous cell carcinomas in SENCAR mice by a polyphenolic fraction isolated from green tea, Cancer Res 53: 5409–5412 (1993).Google Scholar
  48. 48.
    Z. Y. Wang, M.-T. Huang, C.-T. Ho, R. Chang, W. Ma, T. Ferraro, K. R. Reuhl, CS. Yang, A. H. Conney, Inhibitory effect of green tea on the growth of established skin papillomas in mice, Cancer Res 52: 6657–6665 (1992).Google Scholar
  49. 49.
    Z. Y. Wang, R. Agarwal, W. A. Khan, H. Mukhtar, Protection against benzo(a)pyrene and N-nitrosodiethylamine-induced lung and forestomach tumorigenesis in A/J mice by water extracts of green tea and licorice, Carcinogenesis 13: 1491–1494(1992).Google Scholar
  50. 50.
    Z. Y. Wang, J. Y Hong, M.-T. Huang, K. R. Reuhl, A. H. Conney, C. S. Yang, Inhibition of N-nitrosodiethylamine- and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced tumorigenesis in A/J mice by green tea and black tea, Cancer Res 52: 1943–1947 (1992).Google Scholar
  51. 51.
    S. K. Katiyar, R. Agarwal, M. T. Zaim, H. Mukhtar, Protection against N-nitrosodiethylamine and benzo(a)pyrene-induced forestomach and lung tumorigenesis in A/J mice by green tea, Carcinogenesis 14: 849–855 (1993).CrossRefGoogle Scholar
  52. 52.
    S. K. Katiyar, R. Agarwal, H. Mukhtar, Protective effects of green tea polyphenols administered by oral intubation against chemical carcinogen-induced forestomach and pulmonary neoplasia in A/J mice, Cancer Lett 73: 167–172 (1993).CrossRefGoogle Scholar
  53. 53.
    Y. Xu, C.-T. Ho, S. G. Amin, C. Han, F. L. Chung, Inhibition of tobacco-specific nitrosamine-induced lung tumorigenesis in A/J mice by green tea and its major polyphenol as antioxidants, Cancer Res 52: 3875–3879 (1992).Google Scholar
  54. 54.
    Y. Fujita, T. Yamane, M. Tanaka, K. Kuwata, J. Okuzumi, T. Takahashi, H. Fujiki, T. Okuda, Inhibitory Effect of (-)-Epigallocatechin Gallate on Carcinogenesis with N-Ethyl-N’-Nitro-N-Nitrosoguanidine in Mouse Duodenum, Jpn J Cancer Res (Gann) 80: 503–505 (1989).Google Scholar
  55. 55.
    T. Yamane, N. Hagiwara, M. Tateishi, S. Akachi, M. Kim, J. Okuzumi, Y Kitao, M. Inagake, K. Kuwata, T. Takahashi, Inhibition of azoxymethane-induced colon carcinogenesis in rat by green tea polyphenol fraction, Jpn J Cancer Res (Gann) 82: 1336–1340 (1991).Google Scholar
  56. 56.
    T. Narasiwa, Y. Fukaura, A very low dose of green tea polyphenols in drinking water prevents N-methyl-N-nitrosourea-induced colon carcinogenesis in F344 rats, Jpn J Cancer Res) 84: 1007–1009 (1993).Google Scholar
  57. 57.
    Y. Xu, C. Han, The effect of Chinese tea on the occurrence of esophageal tumors induced by N-ni-trosomethylbenzylamine formed in vivo, Biomed Environ Sci 3: 406–412 (1990).Google Scholar
  58. 58.
    G. D. Gao, L. F. Zhou, G. Qi, Initial study of antitumorigenesis of green tea: animal test and flow cytometry, Tumor 10: 42–44 (1990).Google Scholar
  59. 59.
    Z. Y. Chen, R. Q. Yan, G. Z. Qin, Effect of six edible plants on the development of aflatoxiri B1-induced γ-glutamyltranspepidase positive hepatocyte foci in rats, Chung Hua Chung Liu Tsa Chih 9: 109–111 (1987).Google Scholar
  60. 60.
    Y. Li, Comparative study on the inhibitory effect of green tea, coffee and levamisole on the hepatocarcinogenic action of diethylnitrosamine, Chung Hua Chung Liu Tsa Chih 13: 193–195 (1991).Google Scholar
  61. 61.
    N. Harada, F. Takabayashi, I. Oguini, Anti-promotion effect of green tea extracts on pancreatic cancer in golden amster induced by N-nitroso-bis(2-oxopropyl)amine, Int Sympo on Tea Sci (Japan), 1991.Google Scholar
  62. 62.
    M. Hirose, T. Hoshiya, K. Akagi, M. Futakuchi, N. Ito, Inhibition of mammary gland carcinogenesis by green tea catechins and other naturally occurring antioxidants in female Sprague-Dawley rats pretreated with 7, 12, imethylbenz(a)anthracene, Cancer Lett 83: 149–156 (1994).CrossRefGoogle Scholar
  63. 63.
    T. Yamane, T. Takahashi, K. Kuwata, K. Oya, M. Inagake, Y Kitao, M. Suganuma, H. Fujiki, Inhibition of N-methyl-N’-nitro-N-nitrosoguanidine-induced carcinogenesis by (-)-epigallocatechin gallate in the rat glandular stomach, Cancar Res 55: 2081–2084 (1995).Google Scholar
  64. 64.
    C. C. Boring, T. S. Squires, T. Tong, Cancer Statistics, 1993. CA Cancer J Clin 43: 7–26 (1993).CrossRefGoogle Scholar
  65. 65.
    C. C. Boring, T. S. Squires, T. Tong, S. Montgomery, Cancer Statistics, 1994. CA Cancer J Clin 44: 22–23 (1994).CrossRefGoogle Scholar
  66. 66.
    D.G. Bostwick, G.J. Kelloff, P.T. Scardino, C.W. Boone, Chemoprevention of premalignant and early malignant lesions of the prostate, J Cellular Biochem Supplement 16H (1992).Google Scholar
  67. 67.
    C. W. Boone, G. J. Kelloff, Qualitative pathology in chemoprevention trails: standardization and quality control of surrogate endpoint biomarker assays for colon, brest, and prostate, J Cellular Biochem Suppl 19 (1994).Google Scholar
  68. 68.
    D. G. Bostwick, H. B. Burke, T. M. Wheeler, L. W. K. Chung, R. Bookstein, T. G. Pretlow, R. B. Nagle, R. Montirino, M. M. Lieber, R. W. Veltri, W. E. Grizzel, D. J. Grignon, The most promising surrogate endpoint biomarkers for screening candidate chemopreventive compounds for prostatic adenocarcinoma in shortterm phase II clinical trials, J Cellular Biochem Suppl 19:283–289 (1994).Google Scholar
  69. 69.
    G. K. Kelloff, C. W. Boone, J. A. Crowell, V. E. Steele, R. Lubet, L. A. Doody, Surrogate endpoint biomarkers from phase II cancer chemoprevention trials, J Cellular Biochem Suppl 19: 1–9 (1994).CrossRefGoogle Scholar
  70. 70.
    M. Pollard, P. H. Luckert, M. B. Sporn, Prevention of primary prostate cancer in Lobound-Wistar rats by N-(4-hydroxyphenyl) retinamide, Cancer Res 51: 3610–3611 (1991).Google Scholar
  71. 71.
    K. Slavin, D. Kadmon, S. H. Park, P.T. Scardino, M. Anzano, M. B. Sporn, Thompson TC: Dietary fenritinide, a synthetic retinoid, decreases the tumor incidence And the tumor mass of ras+myc-induced carcinomas in the mouse prostate reconstitution model system, Cancer Res 53:4461–4465 (1993).Google Scholar
  72. 72.
    M. B. Garnick, The dilemmas of prostate cancer, Scientific American 72–81 (1994).Google Scholar
  73. 73.
    M. C. Bosland, H. C. Dreef-Van Der Meulen, S. Sukumar, P. Ofner, I. Leav, Multistage prostate carcino genesis: The Role of Hormones, In Multistage Carcinogenesis, CC Harris, S. Hirohashi, N Ito, HC Pitot, T Sugimura (eds). Boca Raton, FL, CRC Press, pp 109–123, 1992.Google Scholar
  74. 74.
    R. K. Ross, B. E. Henderson, Do diet and andorgens alter prostate cancer risk via a common etiologic pathway? J Natl Cancer Inst 86: 252–254 (1994).CrossRefGoogle Scholar
  75. 75.
    C. Muir, J. Waterhouse, T. Mack, (eds): Cancer Incidence in Five Continents. V. Lyon IARC, 1987.Google Scholar
  76. 76.
    H. Yu, R. E. Harris, Y. T. Gao, T. Gao, E. L. Wynder, Comparative epidemiology of cancers of the colon, rectum, prostate and breast in Shanghai, China versus the United States, Int J Epidermiol 30: 76–81(1991).Google Scholar
  77. 77.
    E. L. Wynder, D. P. Rose, L. A. Cohen, Nutrition and prostate cancer: a proposal for dietary intervention, Nutrition and Cancer 22: 1–10(1994).Google Scholar
  78. 78.
    D. P. Rose, A. P. Boyar, E. L. Wynder, International comparisons of mortality rates for cancer of the breast, ovary, prostate and colon and per capita food consumption, Cancer 58: 2363–2371 (1986).CrossRefGoogle Scholar
  79. 79.
    R. K. Rose, H. Shimizu, A. Paganini-Hill, G. Honda, Case-control studies of prostate cancer in blacks and whites in southern California, J Natl Cancer Inst 78: 869–874 (1987).Google Scholar
  80. 80.
    K. J. Pienta, P. S. Esper, Risk factors for prostate cancer, Ann Intern Med 118: 793–803 (1993).Google Scholar
  81. 81.
    L. J. Marton, A. E. Pegg, Polyamines as targets for therapeutic intervention, Annu Rev Pharmacol Toxicol 35: 55–91 (1995).CrossRefGoogle Scholar
  82. 82.
    M. A. Wainstein, F. He, D. Robinson, H.-J. Kung, S. Schwartz, J. M. Giaconia, N. L. Edgehouse, T. P. Pretlow, D. R. Bodner, E. D. Kursh, M. I. Resnick, A. Seftel, T. G. Pretlow, CWR22: Androgen-dependent xenograft model derived from a primary human prostatic carcinoma, Cancer Res 59: 6049–6052 (1994).Google Scholar
  83. 83.
    J. S. Horoszewicz, S. S. Leong, E. Kawinski, J. P. Karr, H. Rosenthal, T. M. Chu, E. A. Mirand, G. P. Murphy, LNCaP model of human prostatic carcinoma. Cancer Res 43: 1809–1818 (1983).Google Scholar
  84. 84.
    S. Kono, M. Ikeda, S. Tokudome, M. Kuratsune, A case-control study of gastric cancer and diet in Northern Kyushu, Jpn J Cancer Res 79: 1067–1074 (1988).Google Scholar
  85. 85.
    I. Oguni, K. Nasu, S. Yammamoto, T. Nomura. On the antitumor activity of fresh green tea leaf, Agric Biol Chem 52: 1879–1880 (1988).CrossRefGoogle Scholar
  86. 86.
    IARC Monographs on the evaluation of the carcinogenic risk to humans: coffee, tea, mate, methylxanthines and methylglyoxal. International Agency for Research on Cancer Working Group, Vol. 51, 1991.Google Scholar
  87. 87.
    Y. T. Gao, J.K. McLaughlin, W. J. Blot, B. T. Ji, Q. Dai, J. F. Fraumeni, Jr., Reduced risk of esophageal cancer associated with green tea consumption, J Natl Cancer Inst 86: 855–858 (1994).CrossRefGoogle Scholar
  88. 88.
    M. J. Lee, Z. Y. Wang, H. Li, L. Chen, Y Sun, S. Gobbo, D. A. Balentine, C. S. Yang, Analysis of plasma and urinary tea polyphenols in human subjects, Cancer Epidemiol Biomarkers Prevention 4: 393–399 (1995).Google Scholar
  89. 89.
    J. S. Shim, M. H. Kang, Y. H. Kim, J. K. Roh, C. Roberts, I. P. Lee, Chemopreventive effect of green tea (Camellia sinensis) among cigaratte smokers, Cancer Epidemiol Biomarkers Prevention 4: 387–391 (1995).Google Scholar
  90. 90.
    K. A. Mereish, D. L. Bunner, D. R. Ragland, D. A. Creasia, Protection against microcystin-LR-induced hepatotoxicity by Silymarin: biochemistry, histopathology, and lethality, Pharmaceutical Res 8:273–277 (1991).CrossRefGoogle Scholar
  91. 91.
    H. Wagner, O. Seligmann, L. Horhammer, R. Munster, The chemistry of Silymarin (silybin), the active principle of the fruits of Silybum marianum (L) Gaertn. (Carduus marianus) (L), Arzneimittelforsch 18: 688–696 (1968).Google Scholar
  92. 92.
    P. Letteron, G. Labbe, C. Degott, A. Berson, B. Fromenty, M. Delaforge, D. Larrey, D. Pessayre Mechanism for the protective effects of Silymarin against carbon tetrachloride-induced lipid peroxidation and hepatotoxicity in mice, Biochem Pharmacol 39: 2027–2034 (1990).CrossRefGoogle Scholar
  93. 93.
    M. Mourelle, P. Muriel, L. Favari, T. Franco, Prevention of CCl4-induced liver cirrhosis by Silymarin, Fundam Clin Pharmacol 3: 183–191 (1989).CrossRefGoogle Scholar
  94. 94.
    E. Bosisio, C. Benelli, O. Pirola, Effect of the flavanolignans of Silybum marianum L. on lipid peroxidation in rat liver microsomes and freshly isolated hepatocytes, Pharmacol Res 25: 147–154 (1992).CrossRefGoogle Scholar
  95. 95.
    R. Carini, A. Comoglio, E. Albano, G. Poli, Lipid peroxidation and irreversible damage in the rat hepatocyte model. Protection by the silybin-phospholipid complex IdB 1016, Biochem Pharmacol 43: 2111–2115 (1992).Google Scholar
  96. 96.
    K. Racz, J. Feher, G. Csomos, I. Varga, R. Kiss, E. Glaz, An antioxidant drug, silibinin, modulates steroid secretion in human pathological adrenocortical cells, J Endocrinol 124: 341–345 (1990).CrossRefGoogle Scholar
  97. 97.
    A. Valenzuela, R. Guerra, L. A. Videla, Antioxidant properties of the flavonoids silybin and (+)-cyani-danol-3: Comparison with butylated hydroxyanisole and butylated hydroxytoluene, Planta Medica 5: 438–440 (1986).CrossRefGoogle Scholar
  98. 98.
    A. Garrido, A. Arancibia, R. Campos, A. Valenzuela, Acetaminophen does not induce oxidative stress in isolated rat hepatocytes: Its probable antioxidant effect is potentiated by the flavonoid silybin, Pharmacol Toxicol 69: 9–12 (1991).CrossRefGoogle Scholar
  99. 99.
    A. Comoglio, G. Leonarduzzi, R. Carini, D. Busolin, H. Basaga, E. Albano, A. Tomasi, G. Poli, P. Morazzoni, M. J. Magistretti, Studies on the antioxidant and free radical scavenging properties of IdB 1016 a new flavanolignan complex, Free Rad Res Comms 11: 109–115 (1990).CrossRefGoogle Scholar
  100. 100.
    G. Muzes, G. Deak, I. Lang, K. Nekam, P. Gergely, J. Feher, Effect of the bioflavonoid Silymarin on the in vitro activity and expression of superoxide dismutase (SOD) enzyme, Acta Physiologica Hungarica 78: 3–9 (1991).Google Scholar
  101. 101.
    V. E. Steele, G. J. Kelloff, B. P. Wilkinson, J. T. Arnold, Inhibition of transformation in cultured rat tracheal epithelial cells by potential chemopreventive agents, Cancer Res 50: 2068–2074 (1990).Google Scholar
  102. 102.
    C. J. Rudd, K. D. Suing, K. Pardo, G. Kelloff, Evaluation of potential chemopreventive agents using a mouse epidermal cell line, JB6, Proc Am Assoc Cancer Res 31: 127 (1990).Google Scholar
  103. 103.
    R. G. Mehta, R. C. Moon, Characterization of effective chemopreventive agents in mammary gland in vitro using an initiation-promotion protocol, Anticancer Res 11: 593–596 (1991).Google Scholar
  104. 104.
    R. Agarwal, S.K. Katiyar, D. W. Lundgren, H. Mukhtar, Inhibitory effect of Silymarin, an anti-hepatotoxic flavonoid, on 12-O-tetradecanoylphorbol-13-acetate-induced epidermal ornithine decarboxylase activity and mRNA in SENCAR mice, Carcinogenesis 15: 1099–1103 (1994).CrossRefGoogle Scholar
  105. 105.
    R. Agarwal, S. K. Katiyar, H. Mukhtar, Protection against tumor promotion in mouse skin by Silymarin, Proc Am Assoc Cancer Res 36: 593 (1995).Google Scholar
  106. 106.
    R. Agarwal, S. K. Katiyar, H. Mukhtar, Protective effects of Silymarin against ultraviolet B radiation-in duced tumorigenesis in SKH-1 hairless mouse skin. J Invest Dermatol 104: 635 (1995).Google Scholar
  107. 107.
    R. Agarwal, S.K. Katiyar, H. Mukhtar, Protection against photocarcinogenesis in SKH-1 hairless mice by Silymarin, Photochem Photobiol 61s: 14s (1995).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Rajesh Agarwal
    • 1
  • Hasan Mukhtar
    • 2
  1. 1.Department of DermatologyUniversity Hospitals of ClevelandClevelandUSA
  2. 2.Skin Diseases Research CenterCase Western Reserve UniversityClevelandUSA

Personalised recommendations