Skip to main content

Is there an Embryological Basis for the Association of Mediastinal Germ Cell Tumors and Hematologic Cancers?

A Review

  • Chapter
Molecular Biology of Hematopoiesis 5
  • 93 Accesses

Abstract

The unexpectedly frequent association of germ cell tumors and hematologic cancers raises a question about the developmental relationship between primordial germ cells (PGCs) and hematopoietic stem cells (HSCs). It has been known for many years that the primordial germ cells of the primitive gonad arise from the yolk sac and that the yolk sac is also the first site of blood formation. It has also become clear that the development of these two apparently disparate cell types is dependent on some of the same factors; c-kit ligand and c-kit receptor are among the most intriguing.

Even more relevant, perhaps, are recent studies investigating the very early development of the PGCs and HSCs in mammals. This new information raises alluring questions concerning the relationship between the ultimate progenitors of these cells which may also be pertinent to the unusual clinical association of germ cell and hematologic malignancies in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nichols CR, Roth BJ, Heerema N, Griep J, Tricot G: Hematologic neoplasia associated with primary mediastinal germ-cell tumors. N Engl. J. Med. 322: 1425–1429, 1990

    Article  PubMed  CAS  Google Scholar 

  2. Larsen M, Evans WK, Shepard FA, Phillips MJ, Bailey D, Messner H: Acute lymphoblastic leukemia: Possible origin from a mediastinal germ cell tumor. Cancer 53: 441 – 444, 1984

    Article  PubMed  CAS  Google Scholar 

  3. Nichols CR, Hoffman R, Einhorn LH, Williams SD, Wheeler LA, Garnick MB: Hematologic malignancies associated with primary mediastinal germ-cell tumors. Ann. Intern. Med. 102: 603 – 609, 1985

    PubMed  CAS  Google Scholar 

  4. Woodruff K, Wang, N, May W, Adrone, E, Denny, C. Feig SA: The clonal nature of mediastinal germ cell tumors and acute myelogenous leukemia. Cancer Genet. Cytogenet. 79: 25 – 31, 1995

    Article  CAS  Google Scholar 

  5. Witschi E: Migration of the germ cells of human embryos from the yolk sac to the primitive gonadal folds. Contr. Embryol. Carnegie Inst., 32: 67 – 80, 1948

    Google Scholar 

  6. Moore MAS, Metealf D: Ontogeny of the haematopoietic system: Yolk sac origin of in vivo and in vitro colony forming cells in the developing mouse embryo. Br. J. Haematol. 18: 279 – 296, 1970

    Article  PubMed  CAS  Google Scholar 

  7. Fuss A: Ueber extraregionare Geschlectszellen bei einem menschlichen Embryo von 4 Wochen. Anat. Anz. 39: 407 – 409, 1911

    Google Scholar 

  8. Chiquoine A D: The identification, origin, and migration of the primordial germ cells of the mouse embryo. Anat. Ree. 118: 135 – 145, 1954

    CAS  Google Scholar 

  9. Mintz B, Rüssel ES: Gene-induced embryological modifications of primordial germ cells in the mouse. J. Exp. Zool. 134: 207 – 237, 1957

    Article  PubMed  CAS  Google Scholar 

  10. Ozdzenski W: Observations on the origin of the primordial germ cells in the mouse. Zool. Polo. 17: 367 – 379, 1967

    Google Scholar 

  11. Tarn PPL, Snow MHL: Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos J.E.E.M. 64: 133 – 147, 1981

    Google Scholar 

  12. Ginsburg M, Snow MHL, McLaren A: Primordial germ cells in the mouse embryo during gastrulation. Develop. 110: 521 – 528, 1990

    CAS  Google Scholar 

  13. Hahnel AC, Rappollee DA, Millan JL, Manes T, Ziomek CA, Theodosiou NG, Werb Z, Pedersen RA, Schultz GA: Two alkaline phosphatase genes are expressed during early development in the mouse embryo. Develop. 110: 555 – 564, 1990

    CAS  Google Scholar 

  14. Spiegelman M, Bennett D: A light and electron microscope study of the primordial germ cells in the early mouse embryo. J.E.E.M. 30: 97 – 118, 1973

    CAS  Google Scholar 

  15. Clark JM, Eddy LM: Fine structural observations on the origin and association of primordial germ cells of the mouse. Devel. Biol. 45: 136 – 155, 1975

    Google Scholar 

  16. Johnson GR, Moore MAS: Role of stem cell migration in initiation of mouse foetal liver haemopoiesis. Nature 258: 726 – 728, 1975

    Article  PubMed  CAS  Google Scholar 

  17. Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D, Testa U, Marinucci M, Peschle C: Human embryonic hemopoiesis: Kinetics of progenitors and precursors underlying the yolk sac–liver transition. J. Clin Invest. 78: 51 – 60, 1986

    Article  PubMed  CAS  Google Scholar 

  18. Peschle C, Mavilio F, Care A, Migliaccio G, Miglioccio AR, Salvo G. Sammoggia P, Petti S, Guerriero R, Marinucci M, Lazzaro D., Russo G, Mastroberardino G: Haemoglobin switching in human embryos. Nature 313: 235 – 237, 1985

    Article  PubMed  CAS  Google Scholar 

  19. Cudennec CA, Thiery J-P, Le Dourarin NM: In vitro induction of adult erythropoiesis in early mouse yolk sac. Proc. Natl. Acad. Sci. 78: 2410 – 2416, 1981

    Article  Google Scholar 

  20. Motro B, Van der Kooy D, Rossant J, Reith A, Bernstein A: Contiguous patterns of c–kit and steel expression: analysis of mutations of W and SI loci. Develop. 113: 1207 – 1221, 1991

    CAS  Google Scholar 

  21. Besmer P, Manova, K, Duttiger R, Huang J, Packer A, Gyssler C, Bachvarova RF: The kit–ligand (steel factor) and its receptor c-kit/W: pleiotropic roles in gametogenesis and melanogenesis. Develop. Supple¬ment 125 – 137, 1993

    Google Scholar 

  22. Maeda H, Yamagat A, Nishikawa S, Yoshinaga K, Kobayashi S, Nishi K, Nishikawa S-I: Requirement of c-kit for development of intestinal pacemaker system. Develop. 116: 369 – 375, 1992

    CAS  Google Scholar 

  23. Bennett D: Developmental analysis of a mutation with pleiotropic effects in the mouse. J Morph. 98: 199 – 229, 1956

    Article  Google Scholar 

  24. Williams DE, de Vries P, Namen A, Widmer MB, Lyman SD: The steel factor. Dev. Biol. 151: 368 – 376, 1992

    CAS  Google Scholar 

  25. Huang E, Nocka K, Beier DR, Chu T-Y, Buck J, Lahm H-W, Wellner D, Leder P, Besmer P: The hematopoietic growth factor KL is encoded by the SI locus and is the ligand of the c–kit receptor, the gene product of the W locus. Cell 63: 225 – 233, 1990

    Article  PubMed  CAS  Google Scholar 

  26. Copeland NG, Gilbert GJ, Cho BC, Donovan PJ, Jenkins NA, Cosman D, Anderson D, Lyman SD, Williams DE: Mast cell growth factor maps near the SI locus and is structurally altered in a number of steel alleles. Cell 63: 175 – 183, 1990

    Article  PubMed  CAS  Google Scholar 

  27. Manova K, Huang EJ, Angeles M, de Leon V, Sanchez S, Pronovost SM, Besmer P, Bachvarova RF: The expression pattern of the c–kit ligand in gonads of mice supports a role for the c–kit receptor in oocyte growth and in proliferation of spermatogonia Devel. Biol. 157: 85 – 99, 1993

    CAS  Google Scholar 

  28. Matsui Y, Zsebo KM, Hogan BLM: Embryonic expression of a haematopoietic growth factor encoded by the SI locus and the ligand for c–kit. Nature 347: 667 – 669, 1990

    Article  PubMed  CAS  Google Scholar 

  29. Godin I, Deed R., Cooke J, Zsebo K, Dexter M, Wylie CC: Effects of the steel gene product on mouse primordial germ cells in culture. Nature 352: 807 – 809, 1991

    Article  PubMed  CAS  Google Scholar 

  30. Packer AI, Hsu YC, Besmer P, Bachvarova RF: The ligand of the c–kit receptor promotes oocyte growth. Dev. Biol. 161: 194 – 205, 1994

    Google Scholar 

  31. Larsen WJ: Human Embryology. Churchill Livingstone, 1993

    Google Scholar 

  32. Snow MHL: Autonomous development of parts isolated from primitive streak–stage mouse embryos. Is development clonal?. J.E.E.M. 65: 269 – 287, 1981

    Google Scholar 

  33. Copp A J, Roberts HM, Polani PE: Chimaerism of primordial germ cells in the early postimplantation mouse embryo following microsurgical grafting of posterior primitive streak cells in vitro. J.E.E.M. 95: 95 – 115, 1986

    CAS  Google Scholar 

  34. Lawson KA, Meneses JJ, Pedersen R: Clonal analysis of epiblast fate during germ layer formation in the mouse embryo: Develop. 113: 891 – 911, 1991

    Google Scholar 

  35. Lawson KA, Pedersen R: Clonal analysis of cell fate during gastrulation and early neurulation in the mouse. CIBA Symp. 165. Postimplantation Development in the Mouse. ( Chadwick DJ, Marsh J. ed.) John Wiley and Sons, 1992

    Google Scholar 

  36. Lawson KA, Hage WJ: Clonal analysis of the origin of primordial germ cells in the mouse. CIBA Symp. 182. Germline Development. John Wiley and Sons, 1994

    Google Scholar 

  37. Dieterlen–Lievre F: On the origin of haematopoietic stem cells in the avian embryo. J.E.E.M 33: 607 – 619, 1975

    Google Scholar 

  38. Medvinsky AL, Samoylina NL, Muller A, Dzierzak E A: An early pre–liver intraembryonic source of CFU–S in the developing mouse. Nature 364: 64 – 67, 1993

    Article  PubMed  CAS  Google Scholar 

  39. Godin IE, Garcia–Porrero JA, Coutinho A, Dieterlen–Lievre F, Marcos, MAR: Para–aortic splanch–nopleure from early mouse embryos contains Bla cell precursors. Nature 364: 67 – 70, 1993

    Article  PubMed  CAS  Google Scholar 

  40. Muller A, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E.: Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1: 291 – 301, 1994

    Article  PubMed  CAS  Google Scholar 

  41. Toles JF, Chui DHK, Belbeck LW, Starr E, Barker JE: Hematopoietic stem cells in murine embryonic yolk sac and peripheral blood. Proc. Natl. Acad. Sci. 86: 7456 – 7459, 1989

    Article  PubMed  CAS  Google Scholar 

  42. Weissman IL, Pappaloannou V, Gardner R: Fetal hematopoietic origins of the adult hematolymphoid system, in Differentiation of Normal and neoplastic Hematopoietic Cells (Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press), pp.33–47, 1978

    Google Scholar 

  43. Muller AM, Medvinsky A, Strouboulis J, Grosveld F, Dzierzak E: Development of hematopoietic stem cell activity in the mouse embryo. Immunity 1: 291 – 301, 1994

    Article  PubMed  CAS  Google Scholar 

  44. Stevens LC: The origin and development of testicular, ovarian, and embryo–derived teratomas, in Cold Spring Harbor Conferences on Cell Proliferation, 10:23–36, 1986

    Google Scholar 

  45. Stevens LC, Makensen JA: Genetic and environmental influences on teratogenesis in mice. J Natl. Cancer Inst. 27: 443 – 453, 1961

    Google Scholar 

  46. Nogouchi T, Stevens LC: Primordial germ cell proliferation in fetal testes in mouse strains with high and low incidences of congenital testicular teratomas. J. Natl Cancer Inst. 69: 907 – 913, 1982

    Google Scholar 

  47. Matsui Y, Zsebo K, Hogan BLM: Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70: 841 – 847, 1992

    Article  PubMed  CAS  Google Scholar 

  48. Muller A, Dzierzak EA: ES cells have only limited lymphopoietic potential after adoptive transfer into mouse recipients. Development 118: 1343–1351, 1993

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Larsen, W.J. (1996). Is there an Embryological Basis for the Association of Mediastinal Germ Cell Tumors and Hematologic Cancers?. In: Abraham, N.G., Asano, S., Brittinger, G., Maestroni, G.J.M., Shadduck, R.K. (eds) Molecular Biology of Hematopoiesis 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0391-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0391-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8031-3

  • Online ISBN: 978-1-4613-0391-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics