Advertisement

JAK2 is Constitutively Associated with C-Kit and is Phosphorylated in Response to Stem Cell Factor

  • Diana Linnekin
  • Sarah R. Weiler
  • Sherry Mou
  • Candy S. DeBerry
  • Jonathan R. Keller
  • Francis W. Ruscetti
  • Douglas K. Ferris
  • Dan L. Longo

Abstract

Stem cell factor (SCF) interacts with the receptor tyrosine kinase c-kit and has potent effects on hematopoiesis. We have examined the role of JAK2 in the SCF signal transduction pathway. JAK2 and c-kit were constitutively associated and treatment with SCF resulted in rapid and transient tyrosine phosphorylation of JAK2. Incubation of cells with JAK2 antisense oligonucleotides resulted in significant decreases in SCF-induced proliferation. These data suggest that JAK2 plays a role in SCF-induced proliferation.

Keywords

Tyrosine Phosphorylation Antisense Oligonucleotide Stem Cell Factor Erythropoietin Receptor Steel Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    . Witte ON: Steel locus defines new multipotent growth factor. Cell 63: 5, 1990PubMedCrossRefGoogle Scholar
  2. 2.
    . Qiu F, Ray P, Brown K, Barker E, Jhanwar S, Ruddle FH, Besmer P: Primary structure of c-kit: relationship with the CSF-l/PDGF receptor kinase family - oncogenic activation of v-kit involves deletion of extracellular domain and C terminus. EMBO J 7: 1003, 1988PubMedGoogle Scholar
  3. 3.
    . Yarden Y, Kuang W-J, Yang-Feng T, Coussens L, Munemitsu S, Dull TJ, Chen E, Schlessinger J, Francke U, Ullrich A: Human proto-oncogene c-kit: a new cell surface receptor tyrosine kinase for an unidentified ligand. EMBO J 6: 3341, 1988Google Scholar
  4. 4.
    . Rottapel, R, Reedijk M, Williams DE, Lyman SD, Anderson DM, Pawson T, Bernstein A: The steel/Wtransduction pathway: Kit autophosphorylation and its association with a unique subset of cytoplasmic signaling proteins is induced by the Steel factor. Mol Cell Biol 11: 3043, 1991PubMedGoogle Scholar
  5. 5.
    . Tang, B, Mano H, Yi T, Ihle JN: Tec kinase associates with c-kit and is tyrosine phosphorylated and activated following stem cell factor binding. Mol Cell Biol 14: 8432, 1994PubMedGoogle Scholar
  6. 6.
    . Miyazawa K, Hendrie PC, Mantel C, Wood K, Ashman LK, Broxmeyer HE: Comparative analysis of signaling pathways between mast cell growth factor (c-kit ligand) and granulocyte-macrophage colony-stimulating factor in a human factor-dependent myeloid cell line involves phosphorylation of Raf-1, GTPase-activating protein and mitogen-activated protein kinase. Exp Hematol 19: 1110, 1991PubMedGoogle Scholar
  7. 7.
    . Okuda K, Sanghera JS, Pelech SL, Kanakura Y, Hallek M, Griffin JD, Druker BJ: Granulocyte-macrophage colony- stimulating factor, interleukin-3, and Steel factor induce rapid tyrosine phosphorylation of p42 and p44 MAP kinase. Blood 79: 2880, 1992PubMedGoogle Scholar
  8. 8.
    . Weiham MJ, Schrader JW: Steelfactor-induced tyrosine phosphorylation in murine mast cells. J Immunol 149: 2772, 1992Google Scholar
  9. 9.
    . Hallek M, Druker B, Lepisto EV, Wood KW, Ernst TJ, Griffin JD: Granulocyte-macrophage colony-stimulating factor and Steel factor induce phosphorylation of both unique and overlapping signal transduction intermediates in a human factor-dependent hematopoietic cell line. J Cell Physiol 153: 176, 1992PubMedCrossRefGoogle Scholar
  10. 10.
    . Matsuguchi T, Salgia R, Hallek M, Eder M, Druker B, Ernst TJ, Griffin JD: Shc phosphorylation in myeloid cells is regulated by granulocyte macrophage colony-stimulating factor, interleukin-3, and Steel factor and is constitutively increased by p210BCR/ABL. J Biol Chem 269: 5016, 1994PubMedGoogle Scholar
  11. 11.
    . Alai M, Mui AL-F, Culter RL, Bustelo XR, Barbacid M, Krystal G: Steel factor stimulates the tyrosine phosphorylation of the proto-oncogene product, p95vav, in human hemopoietic cells. J Biol Chem 267: 18021, 1992PubMedGoogle Scholar
  12. 12.
    . Matsuguchi T, Inhorn RC, Carlesso N, Xu G, Druker B, Griffin JD: Tyrosine phosphorylation of p95Vavin myeloid cells is regulated by GM-CSF, IL-3 and Steel factor and is constitutively increased by p210BCR/ABL. EMBO J 14: 257, 1995PubMedGoogle Scholar
  13. 13.
    . Wilks AF, Harpur AG: Cytokine signal transduction and the JAK family of protein tyrosine kianses. BioEssays 16: 313, 1994PubMedCrossRefGoogle Scholar
  14. 14.
    . Ihle JN, Witthuhn BA, Quelle FW, Yamamoto K, Thierfelder WE, Kreider B, Silvennoinen O: Signaling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 19: 222, 1994PubMedCrossRefGoogle Scholar
  15. 15.
    . Linnekin D, Howard Z, Park L, Farrar W, Ferris D, Longo D: HCK expression correlates with GM-CSF induced proliferation in HL-60 cells. Blood 84: 94, 1994PubMedGoogle Scholar
  16. 16.
    . Muszynski KW, Ruscetti FW, Heidecker G, Rapp U, Troppmair J, Gooya JM, Keller JR: Raf-1 protein is required for growth factor-induced proliferation of hematopoietic cells. J Exp Med, in press.Google Scholar
  17. 17.
    . Harpur AG, Andres A-C, Ziemiecki A, Aston RR, Wilkes AF: JAK2, a third member of the JAK family of protein tyrosine kinases. Oncogene 7: 1347, 1992PubMedGoogle Scholar
  18. 18.
    . Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN: Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 90: 8429, 1993PubMedCrossRefGoogle Scholar
  19. 19.
    . Brizzi MF, Zini MG, Aronica MG, Blechman JM, Yarden Y, Pegoraro L: Convergence of signaling by interleukin-3, granulocyte-macrophage colony-stimulating factor, and mast cell growth factor on JAK2 tyrosine kinase. J Biol Chem 269: 31680, 1994PubMedGoogle Scholar
  20. 20.
    . Witthuhn BA, Quelle FW, Silvennoinen O, Yi T, Tang B, Miura O, Ihle JN: JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell 74: 227, 1993PubMedCrossRefGoogle Scholar
  21. 21.
    . Quelle FW, Sato N, Witthuhn BA, Inhorn RC, Eder M, Miyajima A, Griffin JD, Ihle JN: JAK2 associates with the ßc chain of the receptor for granulocyte-macrophage colony-stimulating factor, and its activation requires the membrane-proximal region. Mol Cell Biol 14: 4335, 1994PubMedGoogle Scholar
  22. 22.
    . Miura O, Nakamura N, Quelle FW, Witthuhn BA, Ihle NJ, Aoki N: Erythropoietin induces association of the JAK2 protein tyrosine kinase with the erythropoietin receptor in vivo. Blood 84: 1501, 1994PubMedGoogle Scholar
  23. 23.
    . He T-C, Jiang N, Zhuang H, Quelle DE, Wojchowski DM: The extended box 2 subdomain of erythropoietin receptor is nonessential for Jak2 activation yet critical for efficient mitogenesis in FDC-ER cells. J Biol Chem 269: 18291, 1994PubMedGoogle Scholar
  24. 24.
    . Barber DL, D’Andrea AD: Erythropoietin and interleukin-2 activate distinct JAK kinase family members. Mol and Cell Biol 14: 6506, 1994Google Scholar
  25. 25.
    . Miura O, Miura Y, Nakamura N, Quelle FW, Witthuhn BA, Ihle JN, Aoki N: Induction of tyrosine phosphorylation of VAV and expression of Pim-1 correlates with Jak2-mediated growth signaling from the erythropoietin receptor. Blood 84: 4135, 1994PubMedGoogle Scholar
  26. 26.
    . Shuai K, Ziemiecki A, Wilks AF, Harpur AG, Sadowski HB, Gilman MZ, Darnell JE: Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature 366: 580, 1993PubMedCrossRefGoogle Scholar
  27. 27.
    . Fu X-Y, Zhang J-J: Transcription factor p91 interacts with the epidermal growth factor receptor and mediates activation of the c-fos gene promoter. Cell 74: 1135, 1993PubMedCrossRefGoogle Scholar
  28. 28.
    . Ruff-Jamison S, Chen K, Cohen S: Induction by EGF and interferon-γ of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 261: 1733, 1993PubMedCrossRefGoogle Scholar
  29. 29.
    . Silvennoinen O, Schnindledr C, Schlessinger J, Levy DE: Ras-independent growth factor signaling by transcription factor tyrosine phosphorylation. Science 261: 1736, 1993PubMedCrossRefGoogle Scholar
  30. 30.
    . Zhong Z, Wen Z, Darnell J: Stat3: A STAT Family Member Activated by Tyrosine Phosphorylation in Response to Epidermal Growth Factor and Interleukin-6. Science 264: 95, 1994PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Diana Linnekin
    • 1
    • 3
  • Sarah R. Weiler
    • 1
  • Sherry Mou
    • 2
  • Candy S. DeBerry
    • 1
  • Jonathan R. Keller
    • 2
  • Francis W. Ruscetti
    • 1
  • Douglas K. Ferris
    • 2
  • Dan L. Longo
    • 1
  1. 1.Laboratory of Leukocyte Biology, Biological Response Modifiers Program Division of Cancer TreatmentNational Cancer Institute Frederick Cancer Research and Development CenterFrederickUSA
  2. 2.Biological Carcinogenesis and Development Program SAIC FrederickNational Cancer Institute-Frederick Cancer Research and Development CenterFrederickUSA
  3. 3.Blg. 567, Rm 226, Laboratory of Leukocyte Biology, Biological Response Modifiers Program, Division of Cancer Treatment, National Cancer InstituteFrederick Cancer Research and Development CenterFrederickUSA

Personalised recommendations