Skip to main content

Exploitation Of Frequent p16 Deletion In The Treatment Of T Cell Acute Lymphoblastic Leukemia

  • Chapter
  • 93 Accesses

Abstract

Methylthioadenosine phosphorylase (MTAP) is essential for the salvage of both adenine and methionine. Deficiency of MTAP has been found in a variety of cancers including acute lymphoblastic leukemia (ALL). Recently, the MTAP gene has been mapped to the close proximity of tumor suppressor genes p16 and p15 which code for inhibitors of the cyclin-dependent kinases 4 and 6. We found that p16/p15 genes are frequently co-deleted in leukemic samples obtained from patients with T-cell ALL (T-ALL). Alteration of p16 gene was found in 30/49 (61%) and 22/34 (65%) of diagnosis and relapse samples, respectively. Among those samples with p16 deletion, p15 was deleted in 19 of 24 (79%) samples studied, and MTAP gene is deleted in 20/38 (53%). The finding of high frequency of MTAP deficiency in T-ALL offers an opportunity for the design of biochemically selective therapy for T-ALL. We studied the effect of methionine depletion in a T-ALL cell line, CEM, in which p16 and MTAP genes are deleted. Incubation of CEM in methionine deficient medium resulted in an initial growth inhibition followed by gradual cell death. In contrast, methionine depletion had no significant effect on the viability of normal blood mononuclear cells or proliferative response of normal T lymphocytes to PHA. In the presence or absence of methionine, the stimulation index was 90.1 ± 8.1 and 75.9 ± 7.8, respectively at 1 μg/ml PHA, and 63.7 ± 2.3 and 69.5 ± 3.9 at 2.5 μg/ml PHA. Although MTAP (-) CEM cells appear to be as sensitive as the MTAP (+) MOLT-4 cells to alanosine, an inhibitor of AMP synthesis, addition of methythioadenosine, a substrate of MTAP, protected the MTAP (+) MOLT-4 cells but not the MTAP (-) CEM cells from alanosine cytotoxicity. These findings suggest the possibility of targeting MTAP for selective therapy of T-ALL.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stocken E, Day RS III, Johnson BE, Skolnick MH: A cell cycle regulator potentially involved in genesis of many tumor types. Science 43625 – 440, 1994.

    Google Scholar 

  2. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA: Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753756, 1994.

    Google Scholar 

  3. Hannon GJ, Beach D: p15 is a potential effector of TGF-ß-induced cell cycle arrest. Nature 371: 257 – 261, 1994.

    Article  PubMed  CAS  Google Scholar 

  4. Zhang SY, Klein-Szanto AJP, Sauter ER, Shafarenko M, Mitsunaga S, Nobori T, Carson DA, Ridge JA, Goodrow TL: Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Can Res 54: 5050 – 5053, 1994.

    CAS  Google Scholar 

  5. Xu L, Sgroi D, Sterner CJ, Beauchamp RL, Pinney DM, Keel S, Ueki K, Rutter JL, Buckler AJ, Louis DN, Gusella JF, Ramesh V: Mutational analysis of CDKN2 (MTS 1/p16) in human breast carcinomas. Can Res 54: 5262 – 5264, 1994.

    CAS  Google Scholar 

  6. Jen J, Harper JW, Bigner SH, Bigner DD, Papadopoulos N, Markowitz S, Willson JK, Kinzler KW, Vogelstein B: Deletion of p16 and p15 genes in brain tumors. Can Res 54: 6353 – 6358, 1994.

    CAS  Google Scholar 

  7. Mori T, Miura K, Aoki T, Nishihira T, Mori S, Nakamura Y: Frequent somatic mutation of the MTS1/CDK41 (multiple tumor suppressor/cyclin-dependent kinase 4 inhibitor) gene in esophageal squamous cell carcinoma. Can Res 54: 3396 – 3397, 1994.

    CAS  Google Scholar 

  8. Caldas C, Hahn SA, da Costa LT, Redston MS, Schutte M, Seymour AB, Weinstein CL, Hruban RH, Yeo CJ, Kern SE: Frequent somatic mutations and homozygous deletions of the p 16 (MTS1) gene in pancreatic adenocarcinoma. Nature Genetics 8: 27 – 32, 1994.

    Article  PubMed  CAS  Google Scholar 

  9. Washimi O, Nagatake M, Osada H, Ueda R, Koshikawa T, Seki T, Takahashi T, Takahashi T. In vivo occurrence of p16 (MTS1) and p15 (MTS2) alterations preferentially in non-small cell lung cancers. Can Res 55:514–517, 1995.

    CAS  Google Scholar 

  10. Okamoto A, Hussain SP, Hagiwara K, Spillare EA, Rusin MR, Demetrick DJ, Serrano M, Hannon GJ, Shiseki M, Zariwala M, et al.: Mutations in the p16INK4/MTS1/CDKN2, p15INK4B/MTS2, and p18 genes in primary and metastatic lung cancer. Can Res 55: 1448 – 1451, 1995.

    CAS  Google Scholar 

  11. Cheng JQ, Jhanwar SC, Klein WM, Bell DW, Lee WC, Altomare DA, Nobori T, Olopade OI, Buckler AJ, Testa JR: p16 alterations and deletion mapping of 9p21–p22 in malignant mesothelioma. Can Res 54: 5547 – 5551, 1994.

    CAS  Google Scholar 

  12. Okuda T, Shurtleff SA, Valentine MB, Raimondi SC, Head DR, Behm F, Curcio-Brint AM, Liu Q, Pui C-H, Sherr CJ, Beach D, Look AT, Downing JR: Frequent deletion of p16INK4a/MTS1 and p15INK4b/MTS2 in pediatric acute lymphoblastic leukemia. Blood 85: 2321 – 2330, 1995.

    PubMed  CAS  Google Scholar 

  13. Ogawa S, Hirano N, Sato N, Takahashi T, Hangaishi A, Tanaka K, Kurokawa M, Tanaka T, Mitani K, Yazaki Y, et al: Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Blood 84: 2431 – 2435, 1994.

    PubMed  CAS  Google Scholar 

  14. Fizzotti M, Cimino G, Pisegna S, Alimena G, Quartatone C, Mandelli F, Pelicci PG, Lo Coco F: Detection of homozygous deletions of the cyclin-dependent kinase 4 inhibtor (p16) gene in acute lymphoblastic leukemia and association with adverse prognostic features. Blood 85: 2685 – 2690. 1995.

    PubMed  CAS  Google Scholar 

  15. Otsuki R, Clark HM, Wellmann A, Jaffe ES, Raffeld M: Involvement of CSKN2 (p16INK4A/MTS1) and p15INK4B/MTS2 om human leukemias and lymphomas. Can Res 55: 1436 – 1440, 1995.

    CAS  Google Scholar 

  16. Cayuela JM, Hebert J, Sigaux: Homozygous (p16INK4A) deletion in primary tumor cells of 163 leukemia patients. Blood 85: 854, 1995.

    PubMed  CAS  Google Scholar 

  17. Stranks G, Height SE, Mitchell P, Jadayel D, Yuille MAR, De Lord C, Clutterbuck RD, Treleaven JG, Powles RL, Nacheva E, Oscier DG, Karpas A, Lenoir GM, Smith SD, Millar JL, Catovsky D, Dyer MJS: Deletions and regarrangement of CDKN2 in lymphoid malignancy. Blood 85: 893 – 901, 1995.

    PubMed  CAS  Google Scholar 

  18. Hussussian CJ, Struewing JP, Glodstein AM, Higgins PAT, Ally DS, Sheahan MD, Clark WH Jr, Tucker MA, Dracopoli NC: Germline p16 mutations in familial melanoma. Nature Genetics 8: 15 – 21, 1994.

    Article  PubMed  CAS  Google Scholar 

  19. Arap W, Nishikawa R, Furnari FB, Cavenee WK, Huang HJ: Replacement of the p16/CDKN2 gene suppresses human glioma cell growth. Can Res 55: 1351 – 1354, 1995.

    CAS  Google Scholar 

  20. Hebert J, Cayuela JM, Berkeley J, Sigaux F: Candidate tumor-suppressor genes MTS1 (p16INK4a) and MTS2 (p15INK4B) display frequent homozygous deletions in primary cells from T- but not from B-cell lineage acute lymphoblastic leukemias. Blood 84: 4038 – 4044, 1994.

    PubMed  CAS  Google Scholar 

  21. Hatta Y, Hirama T Millere CW, Yamada Y, Tomonaga M, Koeffler HP: Homozygous deletions of the p15 (MTS2) and p16 (CDKN2/MTS1) genes in adult T-cell leukemia. Blood 85: 2699 – 2704, 1995.

    PubMed  CAS  Google Scholar 

  22. Pegg AE, Williams-Ashman HG: Phosphate-stimulated breakdown of 5’-methylthioadenosine by rat ventral prostate. Biochem J 115: 241 – 247, 1969.

    PubMed  CAS  Google Scholar 

  23. Williams-Ashman HG, Seidenfeld J, Galletti P: Trends in the biochemical pharmacology of 5’-deoxy-5’-methylthioadenosine. Biochem Pharmacol 31: 277 – 288, 1982.

    Article  PubMed  CAS  Google Scholar 

  24. Trackman PC, Abeles RH: Methionine synthesis from 5’-S-Methylthioadenosine. Resolution of enzyme activities and identification of 1-phospho-5-S methylthioribulose. J Biol Chem 258: 6717 – 6720, 1983.

    PubMed  CAS  Google Scholar 

  25. Backlund PS Jr., Smith RA: Methionine synthesis from 5’-methylthioadenosine in rat liver. J Biol Chem 256: 1533 – 1535, 1981.

    PubMed  CAS  Google Scholar 

  26. Toohey JI: Methylthioadenosine nucleoside phosphorylase deficiency in methylthio-dependent cancer cells. Biophys Res Commun 83: 27 – 35, 1978

    Article  CAS  Google Scholar 

  27. Kamatani N, Yu AL, Carson DA: Deficiency of methylthioadenosine phosphorylase in human leukemic cells in vivo. Blood 60: 1387 – 1391, 1982.

    PubMed  CAS  Google Scholar 

  28. Fitchen JH, Riscoe MK, Dana BW, Lawrence HJ, Ferro AJ: Methylthioadenosine phosphorylase deficiency in human leukemias and solid tumors. Can Res 46: 5409 – 5412, 1986.

    CAS  Google Scholar 

  29. Traweek ST, Riscoe MK, Ferro AJ, Braziel RM, Magenis RE, Fitchen JH: Methylthioadenosine phosphorylase deficiency in acute leukemia: pathologic, cytogenetic, and clinical features. Blood 71: 1568 – 1573, 1988.

    PubMed  CAS  Google Scholar 

  30. Smaaland R, Schanche JS, Kvinnsland S, Hostmark J, Ueland PM: Methylthioadenosine phosphorylase in human breast cancer. Breast Cancer Res Treat 9: 53 – 59, 1987.

    Article  PubMed  CAS  Google Scholar 

  31. Nobori T, Karras JG, Della Ragione F, Waltz TA, Chen PP, Carson DA: Absence of methylthioadenosine phosphorylase in human gliomas. Can Res 51: 3193 – 3197, 1991.

    CAS  Google Scholar 

  32. Olopade OI, Buchhagen DL, Malik K, Sherman J, Nobori T, Bader S, Nau MM, Gazdar AF, Minna JD, Diaz MO: Homozygous loss of the interferon genes defines the critical region on 9p that is deleted in lung cancers. Can Res 53: 2410 – 2415, 1993.

    CAS  Google Scholar 

  33. Nobori T, Szinai I, Amox D, Parker B, Olopade OI, Buchhagen DL, Carson DA: Methylthioadenosine phosphorylase deficiency in human non-small cell lung cancers. Can Res 53: 1098 – 1101, 1993.

    CAS  Google Scholar 

  34. Diccianni MB, Yu J, Hsiao M, Mukerjee S, Shao LE, Yu AL: Clinical significance of p53 mutations in relapsed T-cell acute lymphoblastic leukemia. Blood 84: 3105 – 3112, 1994.

    PubMed  CAS  Google Scholar 

  35. Anandaraj SJ, Jayaram HN, Cooney, DA, Tyagi AK, Han N, Thomas JH, Chitnis M, Montgomery JA: Interaction of L-alanosine (NSC 153, 353) with enzymes metabolizing L-aspartic acid, L-glutamic acid and their amides. Biochem Pharmacol 29: 227 – 245, 1980.

    CAS  Google Scholar 

  36. Sahota A, Webster DR, Potter CF, Simmonds HA, Rodgers AV, Gibson T: Methylthioadenosine phosphorylase activity in human erythrocytes. Clin Chim Acta 128: 283 – 290, 1983.

    Article  PubMed  CAS  Google Scholar 

  37. Ghoda LY, Savarese TM, Dexter DL, Parks RE Jr., Trackman PC, Abeles RH: Characterization of a defect in the pathway for converting 5’-deoxy-5’-methylthioadenosine to methionine in a subline of a cultured heterogeneous human colon carcinoma. J Biol Chem 259: 6715 – 6719, 1984.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Yu, A.L., Chen, J., Diecianni, M.B., Batova, A., Yu, J. (1996). Exploitation Of Frequent p16 Deletion In The Treatment Of T Cell Acute Lymphoblastic Leukemia. In: Abraham, N.G., Asano, S., Brittinger, G., Maestroni, G.J.M., Shadduck, R.K. (eds) Molecular Biology of Hematopoiesis 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0391-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0391-6_31

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8031-3

  • Online ISBN: 978-1-4613-0391-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics