Gene Expression and Endothelial Cell Differentiation

  • D. S. Grant
  • J. L. Kinsella
  • H. K. Kleinman
Part of the NATO ASI Series book series (NSSA, volume 285)


Regulation of the vascular wall is an essential process that allows normal blood flow and facilitates the exchange of soluble gases, ions and vital macromolecules. Normally all vessels are composed of a nonthrombogenic layer of endothelial cells which line the intimai surface of the vessel walls. The differentiation state of this cell layer is maintained by components (factors) present in the blood the extravascular stroma and the extracellular matrix. The contribution of the matrix to vascular wall homeostasis has been unclear in the past, even though matrix comprise a significant portion of the vasculature. In fact, the endothelium is adherent to a thin, specialized extracellular layer know as a basement membrane. The basement membrane provides not only support and an adhesive surface for the endothelium but also maintains the normal differentiated phenotype of the cell layer. Vessel walls also are comprised of other vascular cells such a smooth muscle cells, pericytes and fibroblasts. The former two also have their own basement membrane, and the latter is surrounded by a collagenous insterstitium (the adventitia) and in some cases elastic fibers. Studies which examine the cells comprising the vessel walls must also evaluate the role of the matrix in the maintenance of its structure as well.


Endothelial Cell Basement Membrane Tube Formation Human Endothelial Cell Human Microvascular Endothelial Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auerbach, R., Auerbach, W., and Polakowski, I. (1991) Assays for angiogenesis: A review. Pharmacol Ther. 1: 1–11.CrossRefGoogle Scholar
  2. Badamchian, M., Strickler, M. P., Stone, M. J. and Goldstein, A. L. (1988). Rapid isolation of thymosin beta 4 from thymosin fraction 5 by preparative high-performance liquid chromatography. J Chromatogr, 459, 291–300.PubMedCrossRefGoogle Scholar
  3. Barsigian, C. and Martinez, J. (1990) Binding and covalent processing of fibrinogen by hepatocytes and endothelial cells. Blood Coagulation and Fibrinolysis 1: 551–555.PubMedCrossRefGoogle Scholar
  4. Cheng Y-F, R.H. Kramer. (1989) Human microvascular endothelial cells express integrin-related complexes that mediate adhesion to the extracellular matrix. J. Cellul. Phys., 139:275–286.CrossRefGoogle Scholar
  5. Clauss, I. M., Wathelet, M. G., Szpirer, J., Quamrul Islam, M., Levan, G., Szpirer, C. and Huez, G. A. (1991) Human thymosin B4/6-26 gene is part of a multigene family composed of seven members located on seven different chromosomes. Genomics 9: 174–180.PubMedCrossRefGoogle Scholar
  6. Condon, M. R. and Hall, A. K. (1992). Expression of thymosin beta-4 and related genes in developing human brain. J Mol. Neurosci, 3, 165–70.PubMedCrossRefGoogle Scholar
  7. Cordero OJ; Sarandeses C; and Nogueira M. (1994) Prothymosin alpha receptors on peripheral blood mononuclear cells. FEBS Lett; 341:23–7.PubMedCrossRefGoogle Scholar
  8. Fellin, M., Barsigian, C., Rich, E., and Martinez, J. (1988) Binding and cross-linking of rabbit fibronectin by rabbit hepatocytes in suspension. J. Biol Chem 263(4): 1791–1797.PubMedGoogle Scholar
  9. Folkman, J. (1985) Toward and understanding of angiogenesis: search and discovery. Persp Biol Med 29 10–36.Google Scholar
  10. Folkman, J. (1992). The role of angiogenesis in tumor growth. Semin Cancer Biol, 3, 65–71.PubMedGoogle Scholar
  11. Folkman, J. and Hanahan, D. (1991). Switch to the angiogenic phenotype during tumorigenesis. Princess Takamatsu Symp, 22, 339–47.PubMedGoogle Scholar
  12. Folkman, J. and Ingber, D. (1992). Inhibition of angiogenesis. Semin Cancer Biol, 3, 89–96.PubMedGoogle Scholar
  13. Folkman, J. and Shing, Y. (1992). Angiogenesis. J Biol Chem, 267, 10931–4.PubMedGoogle Scholar
  14. Giordano, T., Howard, T. H., Coleman, J., Sakamoto, K. and Howard, B. H. (1991). Isolation of a population of transiently transfected quiescent and senescent cells my magnetic affinity cell sorting. Exp. Cell Res., 192, 193–197.PubMedCrossRefGoogle Scholar
  15. Goldstein, S., Fortdis, C. M. and Howard, B. H. (1989). Enhanced transfection efficiency and improved cell survival after electroporation of G2/M-synchronized cells and treatment with sodium butyrate. Nucleic Acids Res., 17, 3959–3971.PubMedCrossRefGoogle Scholar
  16. Gomez-Marquez, J., Dosil, M., Segade, F., Bustelo, X., Pichei, J., Dominguez, F. and Freire, M. (1989). Thymosin-b4 gene: preliminary characterisation and expression in tissues, thymic cells, and lymphocytes. J. Immuno., 143, 2740–2744.Google Scholar
  17. Grant, D. S., Tashiro, K. I., Segui-Real, B., Yamada, Y., Martin, G. R., and Kleinman, H. K. (1989) Two different laminin domains mediate the differentiation of human endothelial cells into capillary-like sturctures in vitro. Cell 58: 933–943.PubMedCrossRefGoogle Scholar
  18. Grant, D. S., Kinsella, J. L., Fridman, R., Auerbach, R., Piasecki, B. A., Yamada, Y., Zain, M. and Kleinman, H. K. (1992). Interaction of endothelial cells with a laminin A chain peptide (SIKVAV) in vitro and induction of angiogenic behavior in vivo. J Cell Physiol, 153, 614–625.PubMedCrossRefGoogle Scholar
  19. Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., Polverini, P. and Rosen, E. M. (1993). Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci USA, 90, 1937–1941.PubMedCrossRefGoogle Scholar
  20. Grant, D. S., Kleinman, H. K. and Martin, G. R. (1990). The role of basement membranes in vascular development. Ann N Y Acad Sci, 588, 61–72.PubMedCrossRefGoogle Scholar
  21. Grant, D. S., Kinsella, J. L., Kibbey, M. C., LaFlamme, S., Burbelo, P. D., Goldstein, A. L., and Kleinman, H. K. (1995) Matrigel Induces Thymosin ß4 Gene in Differentiating Endothelial Cells. Submitted, final review process.Google Scholar
  22. Grant, D. S., Lelkes, P. I., Fukuda, K. and Kleinman, H. K. (1991). Intracellular mechanisms involved in basement membrane induced blood vessel differentiation in vitro. In Vitro Cell Dev Biol., 27a, 327–336.PubMedCrossRefGoogle Scholar
  23. Hall, A. (1991). Differential expression of thymosin genes in human tumors and in the developing human kidney. Int. J. Can., 48, 672–677.CrossRefGoogle Scholar
  24. Hajjar, K., N.M. Hamel, (1990) Identification and characterization of human endothelial cell membrane binding sites for tissue plasminogen activator and urokinase. J. Biol. Chem. 265: 2908–16.PubMedGoogle Scholar
  25. Hla, T. and Maciag, T. (1990a). An abundant transcript induced in differentiating human endothelial cells encodes a polypeptide with structural similarities to G-protein-coupled receptors. J Biol Chem, 265, 9308–9313.PubMedGoogle Scholar
  26. Hla, T. and Maciag, T. (1990b). Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochem Biophys Res Commun, 167, 637–643.PubMedCrossRefGoogle Scholar
  27. Hooper, J. A., McDaniel, M. D., Thruman, G. B., Cohen, G. H., Schulhof, R. S., and Goldstein, A. L. (1975) Purification and properties of bovine thymosin. Ann NY Acad Sci (249): 125.Google Scholar
  28. Ingber, D. E. and Folkman, J. (1989). How does extracellular matrix control capillary morphogenesis? Cell, 58, 803–805.PubMedCrossRefGoogle Scholar
  29. Ingber, D. E., Madri, J. A. and Folkman, J. (1987). Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro, 23, 387–394.Google Scholar
  30. Jaffe, E. A., Nachman, R. L., Becker, C. G. and Minick, C. R. (1973). Culture of human endothelial cells derived from umbilical veins-identification by morphological and immunological criteria. J. Clin. Invest., 52, 2745–2756.PubMedCrossRefGoogle Scholar
  31. Kibbey, M. C., Grant, D. S. and Kleinman, H. K. (1992). Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst, 84, 1633–1638.PubMedCrossRefGoogle Scholar
  32. Kleinman, H. K., McGarvey, M. L., Liotta, L. A., Gehron-Robbey, P., Tryggvasson, K. and Martin, G. R. (1987). Isolation and characterization of type IV procollagen, laminin and heparan sulfate proteoglycan from the EHS sarcoma. Biochemistry, 24, 6188.Google Scholar
  33. Kleinman, H. K., Cannon, F. B., Laurie, G. W., Hassel, J. R., Aumalley, M., Terranova, V. P., Martin, G. R., and Dalcq, M. D. B. (1985) Biological activities of laminin. J. Cell Biol 27: 317–325.Google Scholar
  34. Kramer, R. H. and Fuh, G. M. (1985). Type IV collagen synthesis by cultured human microvascular endothelial cells and its deposition in the subendothelial basement membrane. Biochem., 24, 7423–7430.CrossRefGoogle Scholar
  35. Kubota, Y., Kleinman, H. K., Martin, G. R. and Lawley, T. J. (1988). Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J. Cell Biol., 107, 1589–1598.PubMedCrossRefGoogle Scholar
  36. Lin, S. and Morrison-Bogorad, M. (1990). Developmental expression of mRNAs encoding thymosins b4 and b10 in rat brain and other tissues. J. Mol. Neurosci., 2, 35–44.PubMedCrossRefGoogle Scholar
  37. Livianiou, E., Mihehic, M., Evangelatos, G.P., Haritos, A., and Voelter, W. (1992) Athymosin ß4 ELISA using an antibody against the N-terminal fragment thymosin ß4 [1–14]. J. Immun Met 148: 9–14.CrossRefGoogle Scholar
  38. Low, T. and Goldstein, A. (1984). Thymosins: structure, function and therapeutic application. Thy., 6, 27–42.Google Scholar
  39. Low, T. L. and Goldstein, A. L. (1985). Thymosin beta 4. Methods Enzymol, 116, 248–55.PubMedCrossRefGoogle Scholar
  40. Low, T. L., Lin, C. Y., Pan, T. L., Chiou, A. J. and Tsugita, A. (1990). Structure and immunological properties of thymosin beta 9 Met, a new analog of thymosin beta 4 isolated from porcine thymus. Int J Pept Protein Res, 36, 481–8.PubMedCrossRefGoogle Scholar
  41. Low, T. L. K. and Goldstein, A. L. (1981). Chemical Characterization of Thymosin ß4. J. Biol. Chem., 257, 1000–1006.Google Scholar
  42. Maciag, T. (1990). Molecular and cellular mechanisms of angiogenesis. Important Adv Oncol, 1990, 85–98.Google Scholar
  43. Madri, J. A., Dryer, B., Pitlick, F. and Furthmayr, H. (1980). The collagenous components of the subendothelium: correlation of structure and function. Lab. Invest., 43, 303–315.PubMedGoogle Scholar
  44. Madri, J. A., and Williams, S. K. (1983) Capillary endothelial cell cultures: Phenotypic modulation by matrix components. J. Cell Biol 97: 153–165.PubMedCrossRefGoogle Scholar
  45. Madri, J. A. and Pratt, B. M. (1986). Endothelial cell-matrix interactions: in vitro models of angiogenesis. J. Histochem. Cytochem., 34, 85–91.PubMedCrossRefGoogle Scholar
  46. Maragoudakis, M. E., Sarmonika, M., and Panoutsacopoulou, M. (1988) Inhibition of basement membrane biosynthesis prevents angiogenesis. J. Pharmacol Exp. Ther 244 (2): 729–33.PubMedGoogle Scholar
  47. Maragoudakis, M. E., Missirlis, E., Sarmonika, M., Panoutsacopoulou, M., and Karakiulakis, G. (1990) Basement membrane biosynthesis as a target to tumor therapy. J Pharm Exp Therap 253: 753–757.Google Scholar
  48. Montesano, R., M.S. Pepper, J.D. Vassalli, and L. Orci. (1987) Phorbol ester induces cultured endothelial cell to invade to invade a fibrin matrix in the presence of fibrinolytic inhibitors. J. Cellul Physiol. 132: 509–516.PubMedCrossRefGoogle Scholar
  49. Naylor, P. H., Friedman, K. A., Hersh, E., Erdos, M. and Goldstein, A. L. (1986). Thymosin alpha 1 and thymosin beta 4 in serum: comparison of normal, cord, homosexual and AIDS serum. Int J Immunopharmacol, 8, 667–676.PubMedCrossRefGoogle Scholar
  50. Naylor, P. H., McClure, J. E., Spangelo, B. L., Low, T. L. K. and Goldstein, A. L. (1984). Immunochemical studies on thymosin: radioimmunoassay of thymosin ß4. Immunopharm., 7, 9–16.CrossRefGoogle Scholar
  51. Nicosia, R. F., McCormick, J. F. and Bielunas, J. (1984). The formation of endothelial webs and channels in plasma clot culure. Scan Elect Microsc, 2, 793–799.Google Scholar
  52. Paku, S. and Paweletz, N. (1991). First steps of tumor-related angiogenesis. Lab. Invest., 65, 334–346.PubMedGoogle Scholar
  53. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., Pauly, R. R., Grant, D. S. and Martin, G. R. (1992). A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest, 67, 519–28.PubMedGoogle Scholar
  54. Roberts, A. B., McCune, B. K., and Sporn, M. B. (1992) TGF-ß: Regulation of extracellular matrix. Kidney Int. 41: 557–559.PubMedCrossRefGoogle Scholar
  55. Rudin, C. M., Engler, P., and Storb, U. (1990) Differential splicing of thymosin 64 mRNA. J. Immun 144(12): 4857–62.PubMedGoogle Scholar
  56. Safer, D. (1992). The interaction of actin with thymosin beta 4 [news]. J Muscle Res Cell Motil, 13, 269–71.PubMedCrossRefGoogle Scholar
  57. Safer, D., Elzinga, M. and Nachmias, V. T. (1991). Thymosin beta 4 and Fx, an actin-sequestering peptide, are indistinguishable. J Biol Chem, 266, 4029–32.PubMedGoogle Scholar
  58. Sanders, M. C, Goldstein, A. L. and Wang, Y. L. (1992). Thymosin beta 4 (Fx peptide) is a potent regulator of actin polymerization in living cells. Proc Natl Acad Sci USA, 89, 4678–82.PubMedCrossRefGoogle Scholar
  59. Schöbitz, B., Hannappel, E. and Brand, K. (1991a). The early induction of the actin-sequestering peptide thymosin beta 4 in thymocytes depends on the proliferative stimulus. Biochim Biophys Acta, 1095, 230–235.PubMedCrossRefGoogle Scholar
  60. Schöbitz, B., Netzker, R., Hannappel, E. and Brand, K. (1991b). Cell-cycle-regulated expression of thymosin beta 4 in thymocytes. Eur J Biochem, 199, 257–262.PubMedCrossRefGoogle Scholar
  61. Shimamura, R., Kudo, J., Kondo, H., Dohmen, K., Gondo, H., Okamura, S., Ishibashi, H. and Niho, Y. (1990). Expression of the thymosin ß4 gene during differentiation of hematopoietic cells. Blood, 76, 977–984.PubMedGoogle Scholar
  62. Timpl, R., Rohde, H., Gehron Robey, P., Rennard, S. L, Foidart, J.M., and Martin, G.R. (1979). Laminin-a glycoprotein from basement membranes. J. Biol. Chem. 254, 9933–9937.PubMedGoogle Scholar
  63. Vancompernolle, K., Goethals, M., Huet, C, Louvard, D. and Vandekerckhove, J. (1992). G- to F-actin modulation by a single amino acid substitution in the actin binding site of actobindin and thymosin beta 4. Embo J, 11, 4739–46.PubMedGoogle Scholar
  64. Varghese, S., and Kroneneberg, H. M. (1991) Rat thymosin ß4 gene. J. Biol Chem 266(22): 14256–61.PubMedGoogle Scholar
  65. Vukicevic, S., Kleinman, H., Luyten, F. P., Roberts, A.B., Roche, N. S., and Reddi, A. H. (1992) Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp Cell Res 202: 1–8PubMedCrossRefGoogle Scholar
  66. Yamamoto, M., T. Yamagishi, H. Yaginuma, K. Murakami, and N. Ueno. (1994) Localization of thymosin ß4 to the neural tissues during the development of Xenopuslaevis, as studied by insitu hybridization and immunochemistry. Develop.Brain Res. 79,177–185.CrossRefGoogle Scholar
  67. Yu, F. X., Lin, S. C, Morrison, B. M., Atkinson, M. A. and Yin, H. L. (1993). Thymosin beta 10 and thymosin beta 4 are both actin monomer sequestering proteins. J Biol Chem, 268, 502-PubMedGoogle Scholar
  68. Yu, F-X, S-C. Iin, M. Morrison-Bogorad, and H.L. Yin. (1994) Effects of thymosin ß4 and thymosin ß10 on actin struetutres in living cells. Cell Motility and the Cytoskeleton 27: 13–25.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • D. S. Grant
    • 1
  • J. L. Kinsella
    • 2
  • H. K. Kleinman
    • 3
  1. 1.Department of Medicine, Cardeza Foundation for Hematological ResearchThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Lab of Developmental BiologyNational Institute of Dental Research, NIHBethesdaUSA
  3. 3.National Institute on Aging, NIABaltimoreUSA

Personalised recommendations