Classical and First Principles Molecular Dynamics Simulations in Material Science: Application to Structural and Dynamical Properties of Free and Supported Clusters

  • Carlo Massobrio
  • Philippe Blandin
Part of the NATO ASI Series book series (NSSB, volume 355)


The increasing availability of powerful computers has an enormous impact on the solution of a large variety of problems in modern physics and chemistry. Molecular Dynamics (MD) is particularly attractive since it provides an atomic-scale description of the dynamics of complex systems. This is achieved by exploiting the equivalence between thermodynamic quantities and time averages of appropriate variables of coordinates and velocities. In the context of material science topics, Molecular Dynamics has now achieved a firmly established role of useful tool which complements experimental findings, predicts behaviors not accessible to experiments and elucidates mechanisms which can only be understood by analyzing the atomic movements. In principle, the level of detail and accuracy of MD is only limited by the reliability of the model employed. This is a crucial issue which necessitates some historical remarks. As it was nicely described in the introductory paper of one of the first international conferences devoted to the applications of molecular dynamics to condensed matter problems [1], MD simulations began as a method aimed at testing statistical mechanics theories. Simple model potentials were employed with the intent of investigating generic static and dynamic properties of monoatomic fluids. The border between statistical mechanics and material science, giving rise to simulations more oriented toward complex systems featuring both fundamental and technological interest, was crossed in the early seventies with simulations of ionic solids and liquids for which the coulombic interaction is largely predominant.


Molecular Dynamics Cohesive Energy Step Edge Early Stage Growth Ground State Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    W.W. Wood. Early history of computer simulations in statistical mechanics. In G. Ciccotti and W. G. Hoover, editors, Molecular dynamics Simulations of Statistical-Mechanics Systems., page 3. North Holland, Amsterdam, 1986.Google Scholar
  2. [2]
    V. Vitek and D. J. Srolovitz, editors. Atomistic Simulation of Materials, beyond pair potentials. Plenum Press, New York and London, 1989.Google Scholar
  3. [3]
    S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81:511, 1984.ADSCrossRefGoogle Scholar
  4. [4]
    W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. B, 31:1695, 1985.ADSGoogle Scholar
  5. [5]
    M. Parrinello and A. Rahman. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appi. Phys., 52:7158, 1981.CrossRefGoogle Scholar
  6. [6]
    R. Car and M. Parrinello. Uniform approach for molecular dynamics and density-functional theory. Phys. Rev. Lett., 55:2471, 1985.ADSCrossRefGoogle Scholar
  7. [7]
    G. Ciccotti and W. G. Hoover, editors. Molecular Dynamics Simulation of Statistical-Mechanical Systems. North Holland, Amsterdam, 1986.Google Scholar
  8. J.P.Hansen and LR. McDonald. Theory of simple liquids.Academic Press, London, 1986. Google Scholar
  9. [9]
    M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Clarendon Press, Oxford, 1986.Google Scholar
  10. [10]
    G. Ciccotti, D. Frenkel, and L R. McDonald. Simulation of Liquids and Solids. North Holland, Amsterdam, 1987.Google Scholar
  11. C.R.A. Catlow, S.C. Parker, and M.P. Allen, editors. Computer Modeling of Fluids, Polymers and Solids., volume 293 of NATO ASI series C Kluwer. Dordrecht, 1990. Google Scholar
  12. M. Meyer and V. Pontikis, editors.Computer Simulation in Material Science. volume 205 of NATO ASI series E Kluwer. Dordrecht, 1991.Google Scholar
  13. M.P. Allen and D.J. Tildesley, editors. Computer Simulation in Chemical Physics., volume 397 of NATO ASI series C Kluwer. Dordrecht, 1993.Google Scholar
  14. G. Galli and A. Pasquarello. First principles molecular dynamics.In M. P. Allen and D. J. Tildesley, editors, Computer Simulation in Chemical Physics, volume 397 of NATO ASI series C Kluwer. Dordrecht, 1993. Google Scholar
  15. [15]
    M.C. Payne, M.P. Teter, D.C. Allan, T.A. Arias, and J.D. Joannopoulos. Iterative minimization techniques for ab-initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys., 64:1045, 1993.ADSCrossRefGoogle Scholar
  16. [16]
    D.K. Render and P.A. Madden. Molecular dynamics without effective potentials via the car-parrinello approach. Mol. Phys., 70:921, 1992.ADSGoogle Scholar
  17. L. Verlet. Computer “experiments” on classical fluids, i. thermodynamical properties of lennard-jones molecules. Phys. Rev., 159:98, 1967. ADSCrossRefGoogle Scholar
  18. [18]
    P.E. Blöchl and M. Parrinello. Adiabaticity in first-principles molecular dynamics. Phys. Rev. B, 45:9413, 1992.ADSCrossRefGoogle Scholar
  19. [19]
    A.P. Sutton, J.B. Pethica, H. Rafii-Tabar, and J.A. Nieminen. Electron Theory In Alloy Design, chapter Mechanical properties of metals at the nanometre scale. London: The Institute of Materials, 1992.Google Scholar
  20. A.E. Carlsson. Beyond pair potentials in elemental transition metals and semicon¬ductors. In Henry Ehrenreich and David Turnbull, editors, Solid State Physics 43, volume 43. 1990.Google Scholar
  21. K.W. Jacobsen, J.K. Norskov, and M.J. Puska. Interatomic interactions in the effective-medium theory. Phys. Rev. B, 35:7423, 1987. ADSCrossRefGoogle Scholar
  22. [22]
    F. Ercolessi, E. Tosatti, and M. Parrinello. Au(100) surface reconstruction. Phys. Rev. Lett, 57:719, 1986.ADSCrossRefGoogle Scholar
  23. [23]
    M.W. Finnis and J.E. Sinclair. A simple empirical n-body potential for transition metals. Phil. Mag. A, 50:45, 1984.ADSCrossRefGoogle Scholar
  24. [24]
    V. Rosato, M. Guillope, and B. Legrand. Thermodynamical and structural prop¬erties of fee transition metals using a simple tight-binding model. Phil Mag. A, 59:321, 1989.ADSCrossRefGoogle Scholar
  25. [25]
    N. Chetty, K. Stokbro, K.W. Jacobsen, and J.K. Nørskov. Ab-initio potentials for solids. Phys. Rev. B, 46:3798, 1992.ADSCrossRefGoogle Scholar
  26. [26]
    S.M. Foiles, M.I. Baskes, and M.S. Daw. Embedded-atom-method functions for the fee metals cu, ag, au, ni, pd, pt, and their alloys. Phys. Rev. B, 33:7983, 1986.ADSCrossRefGoogle Scholar
  27. [27]
    P.J. Feibelman. Diffusion barrier for ag adatom on pt(lll). Surf. Sci., 313:L801, 1994.ADSCrossRefGoogle Scholar
  28. [28]
    J.K. Nørskov. Covalent effects in the effective medium theory of chemical binding: Hydrogen heats of solution in the 3d metals. Phys. Rev. B, 26:2875, 1982.ADSCrossRefGoogle Scholar
  29. [29]
    M.I. Baskes, S.M. Foiles, and C.F. Melius. Dynamical calculation of low energy hydrogen reemission off hydrogen covered surfaces. Nucl. Mater., 145–147:339, 1987.CrossRefGoogle Scholar
  30. [30]
    A.E. Carlsson, P.A. Fedders, and Charles W. Myles. Generalized embedded-atom format for semiconductors. Phys. Rev. B, 41:1247, 1990.Google Scholar
  31. M.I. Baskes. Application of the embedded-atom method to covalent materials: A semi-empirical potential for silicon. Phys. Rev. Lett., page 2666, 1987.Google Scholar
  32. Murray S. Daw and M.I. Baskes. Embedded-atom method: Derivation and application to impurities, surfaces and other defects in metals. Phys. Rev. B, 29:6443, 1984.ADSCrossRefGoogle Scholar
  33. James H. Rose, John R. Smith, Francisco Guinea, and John Ferrante. Universal features of the equation of state of metals. Phys. Rev. B, 29:2963, 1984.ADSCrossRefGoogle Scholar
  34. Enrico Clementi and Carla Roetti. Roothaan-hartree-fock atomic wave functions, basis functions and their coefficients for ground and certain excited states of neutral and ionized atoms, z ≤ 54. Atomic Data and Nuclear Data Tables, 14:177, 1974.ADSCrossRefGoogle Scholar
  35. [35]
    A.D. McLean and R.S. McLean. Roothaan-hartree-fock atomic wave functions slater basis set expansions for z = 55–92. Atomic Data and Nuclear Data Tables, 26:197, 1981.ADSCrossRefGoogle Scholar
  36. [36]
    M.J. Puska, R.M. Nieminen, and M. Manninen. Atoms embedded in an electron gas: Immersion energies. Phys. Rev. B, 24:3037, 1981.ADSCrossRefGoogle Scholar
  37. [37]
    C. Massobrio and P. Blandin. Structure and dynamics of ag clusters on pt(lll). Phys. Rev. B, 47:13687, 1993.ADSCrossRefGoogle Scholar
  38. [38]
    D.W. Basset and P.R. Webber. Diffusion of single adatoms of platinum, iridium and gold on platinum surfaces. Surf. Sci., 70:520, 1978.ADSCrossRefGoogle Scholar
  39. S.C. Wang and Gert Ehrlich. Structure, stability and surface diffusion of clusters: irx/ir(lll). Surf. Sci., 239:301, 1990.ADSCrossRefGoogle Scholar
  40. L. Hansen, P. Stoltze, K.W. Jacobsen, and J.K. Nørskov. Self-diffusion on copper surfaces. Phys. Rev. B, 44:6523, 1991.ADSCrossRefGoogle Scholar
  41. W.K. Rilling, CM. Gilmore, T.D. Andreadis, and J.A. Sprague. An embedded-atom-method study of diffusion of an ag adatom on (111) ag. Can. J. Phys., 68:1035, 1990. ADSCrossRefGoogle Scholar
  42. Holger Röder. Microscopic processes in heteroepitaxial growth: nucleation, growth and alloying of silver on the (111) surface of platinum. Thèse 1288, Lausanne, EPFL, 1994. Google Scholar
  43. Michael I. Haftel. Surface reconstruction of platinum and gold and the embedded-atom model. Phys. Rev. B, 48:2611, 1993. ADSCrossRefGoogle Scholar
  44. P. Blandin and P. Ballone. Diffusion of metal adatom on compact metal surfaces in the presence of defects and impurities. Surf. Sci., to be published.Google Scholar
  45. [45]
    J.K. Nørskov. Chemisorption on metal surfaces. Rep. Prog. Phys., 53:1253, 1990.ADSCrossRefGoogle Scholar
  46. [46]
    R.J. Madix, G. Erti, and K. Christmann. Preexponential factors for hydrogen desorption from single crystal metal surfaces. Chem. Phys. Lett., 62:38, 1979.ADSCrossRefGoogle Scholar
  47. [47]
    W. Eberhardt, F. Greuter, and E. W. Plummer. Bonding of h to ni, pd and pt surfaces. Phys. Rev. Lett, 46:1085, 1981.ADSCrossRefGoogle Scholar
  48. [48]
    R.W. McCabe and L.D. Schmidt. Binding states of co and h2 on clean and oxidized (111) pt. Surf. Sci., 65:181, 1977.ADSCrossRefGoogle Scholar
  49. Martin Zinke-Allmang, Leonard C.Feldman, and Marcia H. Grabow. Clustering on surfaces. Surf. Sci. Reports, 16:377, 1992. ADSCrossRefGoogle Scholar
  50. Christoph Romainczyk. Struktur und kinetic von reinen und silberbedeckten plati-noberflächen. Thèse 1289, Lausanne, EPFL, 1994. Google Scholar
  51. [51]
    P. Blandin, C. Massobrio, and P. Ballone. Nucleation and growth of metallic submonolayers on compact metal surfaces. Phys. Rev. B, 49:16637, 1994.ADSCrossRefGoogle Scholar
  52. [52]
    H. Röder, R. Schuster, H. Brune, and K. Kern. Monolayer-confined mixing at the ag — pt(lll) interface. Phys. Rev. Lett., 71:2086, 1993.ADSCrossRefGoogle Scholar
  53. [53]
    W.A. de Heer. The physics of simple metal clusters: experimental aspects and simple models. Rev. of Modern Phys., 65:611, 1993.ADSCrossRefGoogle Scholar
  54. [54]
    K.A. Jackson. First principles study of the structural and electronic properties of cu clusters. Phys. Rev. B, 47:9715, 1993.ADSCrossRefGoogle Scholar
  55. [55]
    U. Rothlisberger and W. Andreoni. Structural and electronic properties of sodium microclusters (n=2–20) at low and high temperatures: New insight from ab-initio molecular dynamics studies. J. Chem. Phys., 94:8129, 1991.ADSCrossRefGoogle Scholar
  56. [56]
    D. Vanderbilt. Soft self-consistent pseudopotetials in a generalized eigenvalue formalism. Phys. Rev. B, 41:7892, 1990.ADSCrossRefGoogle Scholar
  57. [57]
    A. Pasquarello, K. Laasonen, R. Car, C. Lee, and D. Vanderbilt. Ab-initio molecular dynamics for d-electron systems: liquid copper at 1500k. Phys. Rev. Lett., 69:1982, 1992.ADSCrossRefGoogle Scholar
  58. [58]
    K. Laasonen, A. Pasquarello, R. Car, C. Lee, and D. Vanderbilt. Car-parrinello molecular dynamics with vanderbilt ultrasoft pseudopotentials. Phys. Rev. B, 47:10142, 1993.ADSCrossRefGoogle Scholar
  59. [59]
    J.P. Perdew and A. Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B, 23:5048, 1981.ADSCrossRefGoogle Scholar
  60. [60]
    V. Bonacic-Koutecky, L. Cespiva, P. Fantucci, and J. Koutecky. Effective core potential-configuration interaction study of electronic structure and geometry of small neutral and cationic agn clusters: Predictions and interpretation of measured properties. J. Chem. Phys., 98:7981, 1993.ADSCrossRefGoogle Scholar
  61. [61]
    V. Bonacic-Koutecky, J. Pittner, C. Scheuch, M.F. Guest, and J. Koutecky. Quantum molecular interpretation of the adsorption spectra of na5, na6, and na7 clusters. J. Chem. Phys., 96:7938, 1992.ADSCrossRefGoogle Scholar
  62. V. Bonacic-Koutecky, P. Fantucci, and J. Koutecky. Systematic ab-initio configuration-interaction study of alkali-metal clusters, ii. relation between electronic structure and geometry of small sodium clusters. Phys. Rev. B, 37:4369, 1988. ADSCrossRefGoogle Scholar
  63. [63]
    I. Moullet, J.L. Martins, F. Reuse, and J. Buttet. Static electric polarizabilities of sodium clusters. Phys. Rev. B, 42:11598, 1990.ADSCrossRefGoogle Scholar
  64. [64]
    C. Massobrio, A. Pasquarello, and R. Car. Structural and electronic properties of small copper clusters: a first principle study. Chem. Phys. Lett., to be published.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Carlo Massobrio
    • 1
  • Philippe Blandin
    • 1
  1. 1.Institut de Physique ExpérimentaleEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations