Determination of Elastic Constants by Line-Focus V(Z) Measurements of Multiple Saw Modes

  • Wei Li
  • Jan D. Achenbach

Abstract

Line focus acoustic microscopy (LFAM) provides a method to determine the elastic constants of homogeneous materials and thin-film/substrate configurations, see Refs. [1–5]. The elastic constants are determined from the velocities of surface acoustic waves, which are obtained from measurement of the V(z) curve. Generally more than one elastic constant has to be determined. It is interesting to note that the procurement of sufficient data is sometimes more complicated for isotropic materials. For anisotropic solids the velocity can be measured as a function of the angle defining the propagation direction in the surface to yield a sufficiently large data set. For thin-film/substrate configurations measurements at various frequencies or for different film thickness may be carried out to obtain sufficient data. There are, however, obvious advantages to work with a single specimen and at a single frequency. This can be done by considering the contributions of more than one leaky SAW mode to the V(z) curve.

Keywords

Attenuation Neron 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    J. Kushibiki, T. Ishikawa, and N. Chubachi, Appl. Phys. Lett. 57(19), 1967–1969 (1990).CrossRefGoogle Scholar
  2. 2.
    J. O. Kim, J. D. Achenbach, P. B. Mirkarimi, and S. A. Barnett, Physical Review В 48(3), 1726–1737 (1993).CrossRefGoogle Scholar
  3. 3.
    Y.-C. Lee, J. O. Kim, and J. D. Achenbach, J. Acoust. Soc. Am. 94(2), 923–930 (1993).CrossRefGoogle Scholar
  4. 4.
    Y.-C. Lee, W. Li, and J. D. Achenbach, in Review of Progress in Quantitative Nondestructive Evaluation, Vol. 14B, edited by D. O. Thompson and D. E. Chimenti (Plenum, New York, 1995), 1797–1804.Google Scholar
  5. 5.
    Y.-C. Lee, J. O. Kim, and J. D. Achenbach, IEEE Trans. Ultrason. Ferroelec. Freq. Contr. 42, 253–264 (1995).CrossRefGoogle Scholar
  6. 6.
    T. Minara, and M. Obata, Experimental Mechanics 32, 30–33 (1992).CrossRefGoogle Scholar
  7. 7.
    Y. Tsukahara, Y. Liu, С Neron, С. К. Jen, and J. Kushibiki, ШЕЕ Trans. Ultrason. Ferroelec. Freq. Contr. 41,458–466 (1994).CrossRefGoogle Scholar
  8. 8.
    J. D. Achenbach, J. O. Kim, and Y.-C. Lee, in Advances in Acoustic Microscopy, Vol. 1, edited by G. Andrew D. Briggs (Plenum Press, New York, 1995), 153–208.CrossRefGoogle Scholar
  9. 9.
    J. A. Nelder, and R. Mead, Computer J. 7, 308–313 (1965).MATHGoogle Scholar
  10. 10.
    J. Kushibiki, and N. Chubachi, IEEE Trans. Sonics Ultrason. SU-32. 189–212 (1985).Google Scholar
  11. 11.
    R. D. Weglein, Appl. Phys. Lett. 35, 215–217 (1979).CrossRefGoogle Scholar
  12. 12.
    A. H. Nayfeh, Wave Motion 14, 55–67 (1991).MATHCrossRefGoogle Scholar
  13. 13.
    D. E. Chimenti, and A. H. Nayfeh, J. Nondestructive Evaluation 9, 51–69 (1990).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Wei Li
    • 1
  • Jan D. Achenbach
    • 1
  1. 1.Center for Quality Engineering and Failure PreventionNorthwestern UniversityEvanstonUSA

Personalised recommendations