Time-Resolved Fluorescence

An Approach in Protein Analysis
  • A. Villari
  • N. Micali
  • M. Fresta
  • S. Trusso
  • G. Puglisi
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 398)


This paper deal with the spectroscopic analysis of proteins, i.e., human serum albumin (HSA) and bovine serum albumin (BSA). These two proteins present very similar UV absorption and fluorescence spectra. The UV-spectra of both proteins result from the sum of the absorption spectra of the aromatic amino acid, mainly tryptophan and tyrosine, present in the biological molecules. On the contrary, the fluorescence HSA and BSA spectra are not the sum of the emission fluorescence spectra of tyrosine and tryptophan, but they are mainly constituted by the tryptophan fluorescence with a poor contribution arising from tyrosine. This fact may be due to inter- and intramolecular quenching phenomena. Significant difference were recorder in the life time fluorescence decay of HSA and BSA, which showed T values of 2.3 and 4.5 nanoseconds, respectively. The time-resolved fluorescence spectroscopy was performed with an experimental apparatus assembled in our laboratories, which is able of measuring the fluorescence decay in the range 2xl0-1010-2xl0-8 sec.


Human Serum Albumin Aromatic Amino Acid Fluorescence Lifetime Fluorescence Decay Tryptophan Fluorescence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ballestrieri C., Colonna G., Giovane A., Irace G., and Servillo L., 1978, Amino acid composition and physic-chemical properties of bluefin tuna (Thunnus thynnus) myoglobin, Eur. J. Biochem. 90: 433.CrossRefGoogle Scholar
  2. Ballestrieri C., Colonna G., Giovane A., Irace G., and Servillo L., 1980, Second-derivative spectroscopy of proteins: studies on tyrosyl residues, Anal Biochem. 106: 49CrossRefGoogle Scholar
  3. Bencze W.L., and Schmid K., 1957, Deth of tyrosine and tryptophan in proteins, Anal. Chem. 29: 1193CrossRefGoogle Scholar
  4. Bertini J., Mannucci C., Noferini R., Perico A., and Rovero R, 1993, Rapid simultaneous determination of tryptophan and tyrosine in synthetic peptides by derivative spectroscopy, J. Pharm. Sci. 82:179CrossRefGoogle Scholar
  5. Breton J., Martin J.L., Migus A., Antonetti A., and Orsag A., 1986, Femtosecond spectroscopy of excitation energy transfer and initial charge separation in the reaction centre of the photosynthetic bacterium Rhodopseudomonas viridis, Proc. Natl Acad. Sci. USA 83: 5121CrossRefGoogle Scholar
  6. Chang J.Y., Knecht R., and Braun D.G., 1983, Isolation and sequence determination of polypeptides at the picomole level, Methods Enzymol. 91: 41CrossRefGoogle Scholar
  7. Chen R.F., Vurex G.G., and Alexander N., 1967, Fluorescence decay times: proteins, coenzymes, and other compounds in water, Science 156: 949CrossRefGoogle Scholar
  8. Creighton S., Hwang J.K., Warshell A., Parson W.W., and Norris J., 1988, Simulating the dynamics of the primary charge separation process in bacterial photosynthesis, Biochemistry 27: 774CrossRefGoogle Scholar
  9. Godik V.I., Blankenship R.E., Causgrove T.P., and Woodbury N., 1993, Time-resolved tryptophan fluorescence in photosynthetic reaction centres from Rhodobacter sphaeroides, FEBS Letters 321: 229.CrossRefGoogle Scholar
  10. Goodwin T.W., and Morton R.A., 1946, Deth of carotene and vitamin A in butter and margarine, Biochem. J. 40: 628.Google Scholar
  11. Hassan S.S.M., 1975, New spectrophotometric method for simultaneous determination of tryptophan and tyrosine, Anal Chem. 47: 1429CrossRefGoogle Scholar
  12. Hochstrasser R.M. and Johnson C.K., 1988, Biological Processes Studied by Applied Physics, in: Ultrashort Laser Pulses and Application, W. Kaiser, Ed., vol. 60, Springer-Verlag, Berlin, p. 357CrossRefGoogle Scholar
  13. Horton H.R., and Koshland D.E., 1965, Highly reactive coloured reagent with selectivity for the tryptophan residue in proteins -2-hydroxy-5-nitrobenzyl bromide, J. Am. Chem. Soc. 87: 1126CrossRefGoogle Scholar
  14. Jones B.N., Paabo S., and Stein S., 1981, Amino acid analysis and enzymatic sequence determination of peptides by an improved o-phtaldialdehyde percolum labelling procedure, Liq. Chromatogr. 4: 565CrossRefGoogle Scholar
  15. Mantsch H.H., Moffatt D.J., and Casal H.L., 1988, Fourier transform methods for spectral resolution enhancement, J. Mol. Struct. 173: 285CrossRefGoogle Scholar
  16. Mattioli T.A, Gray K.A., Lutz M., Oesterhelt D., and Bruno R., 1991, Resonance raman characterization of Rhodobacter sphaeroides reaction centres bearing site-directed mutations at tyrosine M210, Biochemistry 30: 1715.CrossRefGoogle Scholar
  17. Molnär-Perl I., and Pinter-Szakacs M., 1989, Spectrophotometric determination of tryptophan in intact proteins by the acid ninhydrin method, Anal Biochem. 177: 16CrossRefGoogle Scholar
  18. Parson W.W., Chu Z., and Warshell A., 1990, Microscopic simulation of quantum dynamics and nuclear funnelling in bacterial reaction centres, Biochim. Biophys. Acta 1017: 251CrossRefGoogle Scholar
  19. Servillo L., Colonna G., Ballestrieri C., Ragone R., and Irace G., 1982, Simultaneous determination of tyrosine and tryptophan residues in proteins by second-derivative spectroscopy, Anal Biochem. 126: 251CrossRefGoogle Scholar
  20. Simpson R.J., Moritz R.L., Nice E.C., Grego B., Yoshizaki F., Sugimura Y., Freeman H.C., and Murata M., 1986, Complete amino acid sequence of plastocyanin from a green alga, Enteromorphaprolifera, Eur. J. Biochem. 157: 497.CrossRefGoogle Scholar
  21. Spies J.R., 1967, Allergeus (XIX) no. of antigens and the homogeneity of the isolated antigens of fraction CB-lAfrom castor beans, Anal Chem. 39: 1412.CrossRefGoogle Scholar
  22. Teutlein H., Shulten K., Deisenhofer J., Michel H., Brunger A., and Karplus M., 1992, in: The Photosynthetic Bacterial Reaction Centre, Structure and Dynamics, NATO ASI Series A 149, J. Breton and A. Vermeglio, Eds., Plenum Press, New York, p. 139Google Scholar
  23. Villari A., Micali N., Fresta M., and Puglisi G., 1992, Simultaneous spectrophotometric determination in solid phase of aspirin and its impurity salicylic acid in pharmaceutical formulations, J. Pharm. Sci. 81: 895CrossRefGoogle Scholar
  24. Villari A., Micali N., Fresta M., and Puglisi G., 1994, Spectrofluorimetry at zero angle: determination of salicylic acid in acetylsalicylic acid pharmaceutical formulations, The Analyst 119: 1561CrossRefGoogle Scholar
  25. Woodbury N.W., Becker M., Middendorf P., and Parson W.W., 1985, Nanosecond fluorescence from isolated photosynthetic reaction centres of Rhodopseudomonas sphaeroides, Biochemistry 24: 7516CrossRefGoogle Scholar
  26. Wuite A., 1959, Effect of pH on fluorescence of tyrosine, tryptophan and related compounds, Biochem. J. 71: 217.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • A. Villari
    • 1
  • N. Micali
    • 2
  • M. Fresta
    • 3
  • S. Trusso
    • 2
  • G. Puglisi
    • 3
  1. 1.Dipartimento Farmaco-Chimico, Facoltà di FarmaciaUniversità di MessinaMessinaItaly
  2. 2.Istituto di Tecniche Spettroscopiche CNR MessinaMessinaItaly
  3. 3.Istituto di Chimica Farmaceutica e TossicologicaUniversità di CataniaCataniaItaly

Personalised recommendations