Advertisement

The Role of Oxygenic Phototrophic Microorganisms in Production and Conversion of Dimethylsulfoniopropioniate and Dimethylsulfide in Microbial Mats

  • S. A. van Bergeijk
  • L. J. Stal
Chapter

Summary

The dimethylsulfoniopropionate (DMSP) content of several strains of benthic marine cyanobacteria and diatoms was determined. We were unable to detect this compound in any of the cyanobacterial strains even though some of these had been isolated from cyanobacteria-dominated (sub)tidal sediments in which we had measured considerable amounts of DMSP. The diatom Cylindrotheca closterium contained an average concentration of about 4 mmoles DMSP (g Chla)-1 and a strain of Navicula sp. contained approximately 30 jumoles DMSP (g Chla)-1. DMSP production by diatoms seems to be highly species-specific but it provides a potential source for the DMSP encountered in the sediment. The role of cyanobacteria in the transformation of DMSP and DMS was limited. The strains that were tested were not able to oxidize DMS during anoxygenic photosynthesis. Cyanobacteria are probably not able to cleave DMSP enzymatically to DMS and acrylate, however the rise in pH they cause as a result of the photosynthetic C02 fixation may lead to the enhanced chemical hydrolysis of DMSP. A strain of the cyanobacterium Phormidium sp. reduced DMSO to DMS during fermentation under anoxic dark conditions. This is another potential source of DMS in coastal marine sediments.

Keywords

Dimethyl Sulfide Coastal Marine Sediment DMSP Concentration Anoxygenic Photosynthesis Colorless Sulfur Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cohen, Y., B.B. Jorgensen, N.P. Revsbech and R. Poplawski. 1986. Adaptation to hydrogen sulfide of oxygenic and anoxygenic photosynthesis among cyanobacteria. Appl. Environ. Microbiol. 51: 398–407.Google Scholar
  2. 2.
    De Souza, M.R and D.C. Yoch. 1995. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Appl. Environ. Microbiol. 61: 21–26.PubMedGoogle Scholar
  3. 3.
    Granroth, B. and T. Hattula. 1976. Formation of dimethyl sulfide by brackish water algae and its possible implication for the flavor of baltic herring. Finn. Chem. Lett.: 148–150.Google Scholar
  4. 4.
    Gries, C, T.H. Nash III and J. Kesselmeier. 1994. Exchange of reduced sulfur gases between lichens and the atmospere. Biogeochem. 26: 25–39.CrossRefGoogle Scholar
  5. 5.
    Guillard, R.R.L. and J.H. Ryther. 1962. Studies on marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8: 229–239.PubMedCrossRefGoogle Scholar
  6. 6.
    Heyer, H., L.J. Stal and W.E. Krumbein. 1989. Simultaneous heterolactic and acetate fermentation in the marine cyanobacterium Oscillatoria limosa incubated anaerobically in the dark. Arch. Microbiol. 151: 558–564.CrossRefGoogle Scholar
  7. 7.
    Kadota, H. and Y. Ishida. 1972. Production of volatile sulfur compounds by microorganisms. Ann. Rev. Microbiol. 26: 127–138.CrossRefGoogle Scholar
  8. 8.
    Karsten, U., C. Wiencke and G.O. Kirst. 1990. The effect of light intensity and daylength on the ß-dimethylsulphoniopropionate (DMSP) content of marine green macroalgae from Antarctica. Pl. Cell Env. 13: 989–993.CrossRefGoogle Scholar
  9. 9.
    Keller, M.D., W.K. Bellows and R.R.L. Guillard. 1989. Dimethylsulfide production in marine phytoplankton, p. 167–200. In E.S. Saltzman and W.J. Cooper (eds.), Biogenic Sulfur in the Environment, American Chemical Society, Washington DC.CrossRefGoogle Scholar
  10. 10.
    Kelly, D.R and N.A. Smith. 1990. Organic sulfur compounds in the enironment: Biogeochemistry, microbiology, and ecological aspects. Adv. Microbial Ecol. 11: 345–385.Google Scholar
  11. 11.
    Kiene, R.P. 1988. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol. Ecol. 53: 71–78.CrossRefGoogle Scholar
  12. 12.
    Kiene, R.P. and B.F. Taylor. 1988. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 54: 2208–2212.PubMedGoogle Scholar
  13. 13.
    Lovelock, J.E., R.J. Maggs and R.A. Rasmussen. 1972. Atmospheric dimethylsulfide and the natural sulfur cycle. Nature 237: 452–453.CrossRefGoogle Scholar
  14. 14.
    Mantoura, R.F.C. and C.A. Llewellyn. 1983. The rapid determination of algal chlorophyll and carotenoid pigments and their breakdown products in natural waters by reverse-phase high-performance liquid chromatography. Anal. Chim. Acta 151: 297–314.CrossRefGoogle Scholar
  15. 15.
    McKinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140: 315–322.Google Scholar
  16. 16.
    Moezelaar, R. 1995. Fermentation in the cyanobacteria Microcystis aeruginosa and Microcoleus chthonoplastes. PhD thesis, University of Amsterdam.Google Scholar
  17. 17.
    Richardson, D.J., G.F. King, D.J. Kelly, A.G. McEwan, S.J. Ferguson and J.B. Jackson. 1988. The role of auxiliary oxidants in maintaining redox balance during growth of Rhodobacter capsulatus on propionate orbutyrate. Arch. Microbiol. 150: 131–137.CrossRefGoogle Scholar
  18. 18.
    Rippka, R., J. Deruelles, J.B. Waterbury, M. Herdman and R.Y Stanier. 1979. Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111: 1–61.Google Scholar
  19. 19.
    Stal, L.J. 1991. The metabolic versatility of the mat-building cyanobacteria Microcoleus chthonoplastes and Oscillatoria limosa and its ecological significance. Alg. Stud. 64: 453–467.Google Scholar
  20. 20.
    Stal, L.J. 1991. The sulfur metabolism of mat-building cyanobacteria in anoxic marine sediments. Kieler Meeresforsch., Sonderh. 8: 152–157.Google Scholar
  21. 21.
    Stal, L.J. and W.E. Krumbein. 1985. Isolation and characterization of cyanobacteria from a marine microbial mat. Bot. Marina 28: 351–365.CrossRefGoogle Scholar
  22. 22.
    Stal, L.J. and W.E. Krumbein. 1986. Metabolism of cyanobacteria in anaerobic marine sediments. Deuxième Colloque International de Bactériologie Marine. Actes de Colloques 3: 301–309. Gerbam, Ifremer, Brest, France.Google Scholar
  23. 23.
    Stefels, J. and W.H.M. van Boekel. 1993. Production of DMS from dissolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar. Ecol. Prog. Ser. 97: 11–18.CrossRefGoogle Scholar
  24. 24.
    Steudler, P.A. and B.J. Peterson. 1984. Contribution of gaseous sulfur from salt marshes to the global sulfur cycle. Nature 311: 455–457.CrossRefGoogle Scholar
  25. 25.
    Vairavamurthy, A, M.O. Andreae and R.L. Iverson. 1985. Biosynthesis of dimethylsulfide and dimethylpropiothetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanogr. 30: 59–70.CrossRefGoogle Scholar
  26. 26.
    Van der Maarel, M.J.E.C., P. Quist, L. Dijkhuizen and T.A. Hansen. 1993. Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by a marine Desulfobacterium strain. Arch. Microbiol. 160: 411–412.CrossRefGoogle Scholar
  27. 27.
    Van Gemerden, H. 1993. Microbial mats: a joint venture. Mar. Geology 113: 3–25.CrossRefGoogle Scholar
  28. 28.
    Visscher, P.T. and H. van Gemerden. 1991. Production and consumption of dimethylsulfoniopropionate in marine microbial mats. Appl. Environ. Microbiol. 57: 3237–3242.PubMedGoogle Scholar
  29. 29.
    Visscher, P.T. and H. van Gemerden. 1991. Photo-autotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol. Lett. 81: 247–250.CrossRefGoogle Scholar
  30. 30.
    Visscher, P.T., R.P. Kiene and B.F. Taylor. 1994. Demethylation and cleavage of dimethylsulfoniopropionate in marine intertidal sediments. FEMS Microbiol. Ecol. 14: 179–190.CrossRefGoogle Scholar
  31. 31.
    Visscher, P.T., P. Quist and H. van Gemerden. 1991. Methylated sulfur compounds in microbial mats: in situ concentrations and metabolism by a colorless sulfur bacterium. Appl. Environ. Microbiol. 57: 1758–1763.PubMedGoogle Scholar
  32. 32.
    Werner, W., H.-G. Rey and H. Wielinger. 1970. Über die Eigenschaften eines neuen Chromogens für die Blutzuckerbestimmung nach der GOD/POD-methode. Z. Analyt. Chem. 252: 224–228.CrossRefGoogle Scholar
  33. 33.
    White, R.H. 1982. Analysis of dimethyl sulfonium compounds in marine algae. J. Marine Res. 40: 529–536.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • S. A. van Bergeijk
    • 1
  • L. J. Stal
    • 1
  1. 1.Laboratory for MicrobiologyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations