Advertisement

Metabolic Pathways Involved in DMSP Degradation

  • Barrie F. Taylor
  • Pieter T. Visscher
Chapter

Summary

Dimethylsulfoniopropionate (DMSP) is initially biodegraded by cleavage into dimethyl sulfide (DMS) and acrylate or by demethylation to 3-methylmercaptopropionate (MMPA). Demethylation of MMPA produces 3-mercaptopropionate (MPA) which is catabolized with the elimination of H2S to leave acrylate. MMPA is also metabolized with the formation of methanethiol by unknown mechanisms. DMSP lyases which catalyze the cleavage of DMSP into DMS and acrylate, occur in a variety of organisms; aerobic and anaerobic bacteria, phytoplankton, macroalgae and possibly higher plants. Biochemical properties reveal the occurrence of more than one DMSP lyase probably because of the different physiological functions of the enzyme. Demethylations of DMSP to MMPA and thence to MPA are performed by aerobic and anaerobic bacteria. In anaerobes the first demethylation step was documented for a species of Desulfobacterium and the second step from MMPA to MPA was established with species of Methanosarcina. MPA degradation has been observed only with anoxygenic phototrophic bacteria (Rhodopseudomonas sp. strain BB1, Thiocapsa roseopersicina) and occurs with H2S elimination to leave acrylate. DMS and methanethiol are degraded by a variety of aerobes and anaerobes. Strict aerobes may use monooxygenases to oxidize the methyl groups whereas facultative and strict anaerobes probably employ transmethylases and a C1-folate system of oxidation. Methanogens probably funnel methyl groups from DMS, methanethiol and MMPA via specific methyl transferases to methyl coenzyme M reductase.

Keywords

Glycine Betaine Dimethyl Sulfide Formate Dehydrogenase Anoxygenic Phototrophic Bacterium Sulfonium Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baker, S. C., D. P. Kelly and J. C. Murrell. 1991. Microbial degradation of methane sulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350: 627–628.CrossRefGoogle Scholar
  2. 2.
    Dacey, J. W. H. and N. V. Blough. 1987. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethyl sulfide. Geophys. Res. Lett. 14: 1246–1249.CrossRefGoogle Scholar
  3. 3.
    Dacey, J. W. H., G. M. King and S. G. Wakeham. 1987. Factors controlling emission of dimethyl sulfide from salt marshes. Nature 330: 643–645.CrossRefGoogle Scholar
  4. 4.
    Daughton, C. G., A. M. Cook and M. Alexander. 1979. Biodegradation of phosphate toxicants yields methane or ethane on cleavage of the C-P bond. FEMS Microbiol. Lett. 5: 91–93.CrossRefGoogle Scholar
  5. 5.
    de Souza, M. P., and D. C. Yoch. 1996. N-terminal amino acid sequences and comparison of DMSP lyases from Pseudomonas doudoroffli and Alcaligenes strain M3 A. In Biological and environmental chemistry of DMSP and related sulfonium compounds. R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (eds.), Plenum Press, New York.Google Scholar
  6. 6.
    De Souza, M. P. and D. C. Yoch. 1995. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Appl. Environ. Microbiol. 61: 21–26.PubMedGoogle Scholar
  7. 7.
    Diaz, M. R. and B. F. Taylor. 1994. Comparison of dimethylsulfoniopropionate lyase activity in a prokaryote and a eukaryote. Annu. Gen. Meet. Amer. Soc. Microbiol. Abstract N18, p. 319. Google Scholar
  8. 8.
    Diaz, M. R. and B. F. Taylor. 1996. Metabolism of methylated osmolytes by aerobic bacteria from Mono Lake, a moderately hypersaline, alkaline environment. FEMS Microbiol. Ecol. In press.Google Scholar
  9. 9.
    Diaz, M. R., P. T. Visscher and B. F. Taylor. 1992. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol. Lett. 96: 61–66.CrossRefGoogle Scholar
  10. 10.
    Finster, K., Y. Tanimoto and F. Bak. 1992. Fermentation of methanethiol and dimethyl sulfide by a newly isolated methanogenic bacterium. Arch. Microbiol. 157: 425–430.CrossRefGoogle Scholar
  11. 11.
    Geigert, J., S. K. De Witt, S. L. Neidleman, G. Lee, D. J. Dalietos and M. Moreland. 1983. DMSO is a substrate for chloroperoxidase. Biochem. Biophys. Res. Commun. 116: 82–85.PubMedCrossRefGoogle Scholar
  12. 12.
    Gottschalk, G. 1986. Bacterial metabolism. Springer-Verlag, New York.CrossRefGoogle Scholar
  13. 13.
    Hanson, A. D. and D. A. Gage. 1996. 3-Dimethylsulfoniopropionate biosynthesis and use by flowering plants. In Biological and environmental chemistry of DMSP and related sulfonium compounds R. P. Kiene, P. T. Vischer, M. D. Keller, and E. O. Kirst (eds.). Plenum Press, New York.Google Scholar
  14. 14.
    Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989. Anaerobic degradation of betaine by marine Desulfo-bacterium strains. Arch. Microbiol. 152s: 393–396.CrossRefGoogle Scholar
  15. 15.
    Heijthuijsen, J. H. F. G., and T. A. Hansen. 1990. C1 metabolism in anaerobic non-methanogenic bacteria, pp 163–193. In: G. A. Codd, L. Dijkhuizen and F. R. Tabita (ed.), Autotrophic Microbiology and One-Carbon Metabolism. Kluwer, Boston.Google Scholar
  16. 16.
    Hunkele, G. E., P. T. Visscher and B. F. Taylor. 1996. Aerobic formation of methanethiol production from organosulfur precursors by bacteria isolated from marine environments. In preparation.Google Scholar
  17. 17.
    Ishida, Y. 1968. Physiological studies on the evolution of dimethyl sulfide from unicellular marine algae. Mem. Coll. Agric. Kyoto 94: 47–82.Google Scholar
  18. 18.
    Kadota, H. and Y. Ishida. 1968. Effects of salt on the enzymatic production of dimethyl sulfide from Gyrodinium cohnii. Bull. Jap. Soc. Sei. Fish. 34: 512–518.Google Scholar
  19. 19.
    Keller, M. D., W. K. Bellows and R. R. L. Guillard. 1989. Dimethyl sulfide production in marine phytoplankton, pp. 167–200. In E. S. Saltzman and W. C. Cooper (ed.), Biogenic Sulfur in the Environment. American Chemical Society, Washington D.C.Google Scholar
  20. 20.
    Kelly, D. P. and S. C. Baker. 1990. The organosulfur cycle: aerobic and anaerobic processes leading to turnover of Crsulfur compounds. FEMS Microbiol. Rev. 87:241–246.CrossRefGoogle Scholar
  21. 21.
    Kelly, D. P., S. C. Baker, J. Trickett, M. Davey and J. C. Murrell. 1994. Methane sulfonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140: 1419–1426.CrossRefGoogle Scholar
  22. 22.
    Kelly, D. P. and N. A. Smith. 1990. Organic sulfur compounds in the environment. Biogeochemistry, microbiology and ecological aspects. Adv. Microbial Ecol. 11: 345–385.Google Scholar
  23. 23.
    Kiene, R. P. 1988. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol. Ecol. 53: 71–78.CrossRefGoogle Scholar
  24. 24.
    Kiene, R. P. 1990. Dimethyl sulfide production from dimethyl sulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56: 3292–3297.PubMedGoogle Scholar
  25. 25.
    Kiene, R. P. and D. G. Capone. 1988. Microbial transformations of methylated sulfur compounds in anoxic saltmarsh sediments. Microbial Ecol. 15: 275–291.CrossRefGoogle Scholar
  26. 26.
    Kiene, R. P., K. D. Malloy and B. F. Taylor. 1990. Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Appl. Environ. Microbiol. 56: 156–161.PubMedGoogle Scholar
  27. 27.
    Kiene, R. P., R. S. Oremland, A. Catena, L. G. Miller and D. G. Capone. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52: 1037–1045.PubMedGoogle Scholar
  28. 28.
    Kiene, R. P. andB. F. Taylor. 1988. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 54: 2208–2212.PubMedGoogle Scholar
  29. 29.
    Ledyard, K. M., and J. W. H. Dacey. 1996. Kinetics of DMSP-lyase activity in coastal seawater. In R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (ed.), Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York.Google Scholar
  30. 30.
    Ledyard, K. M. and J. W. H. Dacey. 1994. Dimethyl sulfide production from dimethylsulfoniopropionate by a marine bacterium. Mar. Ecol. Progr. Ser. 110: 95–103.CrossRefGoogle Scholar
  31. 31.
    Ledyard, K. M., E. F. DeLong and J. W. H. Dacey. 1993. Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch. Microbiol. 160: 312–318.CrossRefGoogle Scholar
  32. 32.
    Moller, B., R. Ossmer, B. H. Howard, G. Gottschalk and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa ovata sp. nov. Arch. Microbiol. 139: 388–396.CrossRefGoogle Scholar
  33. 33.
    Mopper, K. and B. F. Taylor. 1986. Biogeochemical cycling of sulfur: thiols in coastal marine sediments, pp. 324–339. In M. Sohn (ed.), Organic Marine Geochemistry. American Chemical Society, Washington, D.C.CrossRefGoogle Scholar
  34. 34.
    Naumann, E., H. Hippe and G. Gottschalk. 1983. Betaine: a new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri cocul-ture. Appl. Environ. Microbiol. 45: 474–483.PubMedGoogle Scholar
  35. 35.
    Neidleman, S. L. and J. Geigert. 1986. Biohalogenation: Principles, basic rules and applications. Wiley, New York.Google Scholar
  36. 36.
    Rhodes, D. and A. D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 357–384.CrossRefGoogle Scholar
  37. 37.
    Sieburth, J. M. 1960. Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.PubMedCrossRefGoogle Scholar
  38. 38.
    Sieburth, J. M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82: 72–79.PubMedGoogle Scholar
  39. 39.
    Stefels, J. and W. H. M. van Boekel. 1993. Production of DMS from disolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar. Ecol. Progr. Ser. 97: 11–18.CrossRefGoogle Scholar
  40. 40.
    Tammoto, Y. and F. Bak. 1994. Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl. Environ. Microbiol. 60: 2450–2455.Google Scholar
  41. 41.
    Taylor, B. F. and D. C. Gilchrist. 1991. New routes for the aerobic biodegradation of dimethylsulfoniopropionate. Appl. Environ. Microbiol. 57: 3581–3584.PubMedGoogle Scholar
  42. 42.
    Taylor, B. F., G. E. Hunkele and R. Baynard. 1993. Methanethiol formation from from 3-methiolpropion-ate and S-methylcysteine by marine bacteria. Annu. Gen. Meet. Amer. Soc. Microbiol. Abstract Q40, p. 353.Google Scholar
  43. 43.
    Taylor, B. F. Unpublished data.Google Scholar
  44. 44.
    Taylor, B. F. and D. C. Gilchrist. Unpublished data.Google Scholar
  45. 45.
    Tholozan, J. L., J. P. Touzel, E. Samain, J. P. Grivet, G. Prensier and G. Albagnac. 1992. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch. Microbiol. 157: 249–257.PubMedCrossRefGoogle Scholar
  46. 46.
    Thompson, A. S., N. J. P. Owens and J. C. Murreil. 1995. Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 61: 2388–2393.PubMedGoogle Scholar
  47. 47.
    Vairavamurthy, A., M. O. Andreae and R. L. Iverson. 1985. Biosynthesis of dimethyl sulfide and dimethylsulfoniopropionate by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanogr. 30: 59–70.CrossRefGoogle Scholar
  48. 48.
    van der Maarel, M. J. E. C., and T. A. Hansen. 1996. Anaerobic microorganisms involved in the degradation of DMS(P). In Biological and environmental chemistry of DMSP and related sulfonium compounds. R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (eds.), Plenum Press, New York. p. 351–360.Google Scholar
  49. 49.
    van der Maarel, M. J. E. C., M. Jansen and T. A. Hansen. 1995. Methanogenic conversion of 3–S-methyl-mercaptopropionate to 3-mercaptopropionate. Appl. Environ. Microbiol. 61: 48–51.PubMedGoogle Scholar
  50. 50.
    van der Maarel, M. J. E. C., P. Quist, L. Dijkhuizen and T. A. Hansen. 1993. Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by a marine Desulfobacterium strain. Arch. Microbiol. 160: 411–412.CrossRefGoogle Scholar
  51. 51.
    Visscher, P. T. and B. F. Taylor. 1993. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Appl. Environ. Microbiol. 59: 4083–4089.PubMedGoogle Scholar
  52. 52.
    Visscher, P. T. and B. F. Taylor. 1993. A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl. Environ. Microbiol. 59: 3784–3789.PubMedGoogle Scholar
  53. 53.
    Visscher, P. T. and B. F. Taylor. 1994. Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl. Environ. Microbiol. 60.4617–4619.PubMedGoogle Scholar
  54. 54.
    Visscher, P. T. and B. F. Taylor. 1993. Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl. Environ. Microbiol. 59: 93–96.PubMedGoogle Scholar
  55. 55.
    Visscher, P. T. and B. F. Taylor. Unpublished data. Google Scholar
  56. 56.
    Visscher, P. T. and H. van Gemerden. 1991. Photoautotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol. Lett. 81: 247–250.CrossRefGoogle Scholar
  57. 57.
    Wackett, L. P., J. F. Honek, T. P. Begley, V. Wallace, W. H. Orme-Johnson and C. T. Walsh. 1987. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Biochemistry 26: 6012–6018.PubMedCrossRefGoogle Scholar
  58. 58.
    Wagner, C. and E. R. Stadtman. 1962. Bacterial fermentation of dimethyl-ß-propiothetin. Arch. Biochem. Biophys. 98: 331–336.PubMedCrossRefGoogle Scholar
  59. 59.
    Wood, J. M., F. S. Kennedy and R. S. Wolfe. 1968. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7: 1707–1713.PubMedCrossRefGoogle Scholar
  60. 60.
    Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 277: 1214–1222.CrossRefGoogle Scholar
  61. 61.
    Zeyer, J., P. Eicher, S. G. Wakeham and R. P. Schwarzenbach. 1987. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 53: 2026–2032.PubMedGoogle Scholar
  62. 62.
    Zhang, L., I. Kuniyoshi, M. Hirai and M. Shoda. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR–11 isolated from peat biofilter. Biotechnol. Lett. 13: 223–228.CrossRefGoogle Scholar
  63. 63.
    de Zwart, J. M. M. and J. G. Kuenen. 1992. C1cycle of sulfur compounds. Biodegradation 3: 37–59.CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Barrie F. Taylor
    • 1
  • Pieter T. Visscher
    • 2
  1. 1.Division of Marine and Atmospheric Chemistry, Rosenstiel School of Marine and Atmospheric ScienceUniversity of MiamiMiamiUSA
  2. 2.Department of Marine ScienceUniversity of ConnecticutGrotonUSA

Personalised recommendations