Skip to main content

Summary

Dimethylsulfoniopropionate (DMSP) is initially biodegraded by cleavage into dimethyl sulfide (DMS) and acrylate or by demethylation to 3-methylmercaptopropionate (MMPA). Demethylation of MMPA produces 3-mercaptopropionate (MPA) which is catabolized with the elimination of H2S to leave acrylate. MMPA is also metabolized with the formation of methanethiol by unknown mechanisms. DMSP lyases which catalyze the cleavage of DMSP into DMS and acrylate, occur in a variety of organisms; aerobic and anaerobic bacteria, phytoplankton, macroalgae and possibly higher plants. Biochemical properties reveal the occurrence of more than one DMSP lyase probably because of the different physiological functions of the enzyme. Demethylations of DMSP to MMPA and thence to MPA are performed by aerobic and anaerobic bacteria. In anaerobes the first demethylation step was documented for a species of Desulfobacterium and the second step from MMPA to MPA was established with species of Methanosarcina. MPA degradation has been observed only with anoxygenic phototrophic bacteria (Rhodopseudomonas sp. strain BB1, Thiocapsa roseopersicina) and occurs with H2S elimination to leave acrylate. DMS and methanethiol are degraded by a variety of aerobes and anaerobes. Strict aerobes may use monooxygenases to oxidize the methyl groups whereas facultative and strict anaerobes probably employ transmethylases and a C1-folate system of oxidation. Methanogens probably funnel methyl groups from DMS, methanethiol and MMPA via specific methyl transferases to methyl coenzyme M reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker, S. C., D. P. Kelly and J. C. Murrell. 1991. Microbial degradation of methane sulfonic acid: a missing link in the biogeochemical sulfur cycle. Nature 350: 627–628.

    Article  CAS  Google Scholar 

  2. Dacey, J. W. H. and N. V. Blough. 1987. Hydroxide decomposition of dimethylsulfoniopropionate to form dimethyl sulfide. Geophys. Res. Lett. 14: 1246–1249.

    Article  CAS  Google Scholar 

  3. Dacey, J. W. H., G. M. King and S. G. Wakeham. 1987. Factors controlling emission of dimethyl sulfide from salt marshes. Nature 330: 643–645.

    Article  CAS  Google Scholar 

  4. Daughton, C. G., A. M. Cook and M. Alexander. 1979. Biodegradation of phosphate toxicants yields methane or ethane on cleavage of the C-P bond. FEMS Microbiol. Lett. 5: 91–93.

    Article  CAS  Google Scholar 

  5. de Souza, M. P., and D. C. Yoch. 1996. N-terminal amino acid sequences and comparison of DMSP lyases from Pseudomonas doudoroffli and Alcaligenes strain M3 A. In Biological and environmental chemistry of DMSP and related sulfonium compounds. R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (eds.), Plenum Press, New York.

    Google Scholar 

  6. De Souza, M. P. and D. C. Yoch. 1995. Purification and characterization of dimethylsulfoniopropionate lyase from an Alcaligenes-like dimethyl sulfide-producing marine isolate. Appl. Environ. Microbiol. 61: 21–26.

    PubMed  Google Scholar 

  7. Diaz, M. R. and B. F. Taylor. 1994. Comparison of dimethylsulfoniopropionate lyase activity in a prokaryote and a eukaryote. Annu. Gen. Meet. Amer. Soc. Microbiol. Abstract N18, p. 319.

    Google Scholar 

  8. Diaz, M. R. and B. F. Taylor. 1996. Metabolism of methylated osmolytes by aerobic bacteria from Mono Lake, a moderately hypersaline, alkaline environment. FEMS Microbiol. Ecol. In press.

    Google Scholar 

  9. Diaz, M. R., P. T. Visscher and B. F. Taylor. 1992. Metabolism of dimethylsulfoniopropionate and glycine betaine by a marine bacterium. FEMS Microbiol. Lett. 96: 61–66.

    Article  CAS  Google Scholar 

  10. Finster, K., Y. Tanimoto and F. Bak. 1992. Fermentation of methanethiol and dimethyl sulfide by a newly isolated methanogenic bacterium. Arch. Microbiol. 157: 425–430.

    Article  CAS  Google Scholar 

  11. Geigert, J., S. K. De Witt, S. L. Neidleman, G. Lee, D. J. Dalietos and M. Moreland. 1983. DMSO is a substrate for chloroperoxidase. Biochem. Biophys. Res. Commun. 116: 82–85.

    Article  PubMed  CAS  Google Scholar 

  12. Gottschalk, G. 1986. Bacterial metabolism. Springer-Verlag, New York.

    Book  Google Scholar 

  13. Hanson, A. D. and D. A. Gage. 1996. 3-Dimethylsulfoniopropionate biosynthesis and use by flowering plants. In Biological and environmental chemistry of DMSP and related sulfonium compounds R. P. Kiene, P. T. Vischer, M. D. Keller, and E. O. Kirst (eds.). Plenum Press, New York.

    Google Scholar 

  14. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1989. Anaerobic degradation of betaine by marine Desulfo-bacterium strains. Arch. Microbiol. 152s: 393–396.

    Article  CAS  Google Scholar 

  15. Heijthuijsen, J. H. F. G., and T. A. Hansen. 1990. C1 metabolism in anaerobic non-methanogenic bacteria, pp 163–193. In: G. A. Codd, L. Dijkhuizen and F. R. Tabita (ed.), Autotrophic Microbiology and One-Carbon Metabolism. Kluwer, Boston.

    Google Scholar 

  16. Hunkele, G. E., P. T. Visscher and B. F. Taylor. 1996. Aerobic formation of methanethiol production from organosulfur precursors by bacteria isolated from marine environments. In preparation.

    Google Scholar 

  17. Ishida, Y. 1968. Physiological studies on the evolution of dimethyl sulfide from unicellular marine algae. Mem. Coll. Agric. Kyoto 94: 47–82.

    Google Scholar 

  18. Kadota, H. and Y. Ishida. 1968. Effects of salt on the enzymatic production of dimethyl sulfide from Gyrodinium cohnii. Bull. Jap. Soc. Sei. Fish. 34: 512–518.

    CAS  Google Scholar 

  19. Keller, M. D., W. K. Bellows and R. R. L. Guillard. 1989. Dimethyl sulfide production in marine phytoplankton, pp. 167–200. In E. S. Saltzman and W. C. Cooper (ed.), Biogenic Sulfur in the Environment. American Chemical Society, Washington D.C.

    Google Scholar 

  20. Kelly, D. P. and S. C. Baker. 1990. The organosulfur cycle: aerobic and anaerobic processes leading to turnover of Crsulfur compounds. FEMS Microbiol. Rev. 87:241–246.

    Article  CAS  Google Scholar 

  21. Kelly, D. P., S. C. Baker, J. Trickett, M. Davey and J. C. Murrell. 1994. Methane sulfonate utilization by a novel methylotrophic bacterium involves an unusual monooxygenase. Microbiology 140: 1419–1426.

    Article  CAS  Google Scholar 

  22. Kelly, D. P. and N. A. Smith. 1990. Organic sulfur compounds in the environment. Biogeochemistry, microbiology and ecological aspects. Adv. Microbial Ecol. 11: 345–385.

    CAS  Google Scholar 

  23. Kiene, R. P. 1988. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol. Ecol. 53: 71–78.

    Article  CAS  Google Scholar 

  24. Kiene, R. P. 1990. Dimethyl sulfide production from dimethyl sulfoniopropionate in coastal seawater samples and bacterial cultures. Appl. Environ. Microbiol. 56: 3292–3297.

    PubMed  CAS  Google Scholar 

  25. Kiene, R. P. and D. G. Capone. 1988. Microbial transformations of methylated sulfur compounds in anoxic saltmarsh sediments. Microbial Ecol. 15: 275–291.

    Article  Google Scholar 

  26. Kiene, R. P., K. D. Malloy and B. F. Taylor. 1990. Sulfur-containing amino acids as precursors of thiols in anoxic coastal sediments. Appl. Environ. Microbiol. 56: 156–161.

    PubMed  CAS  Google Scholar 

  27. Kiene, R. P., R. S. Oremland, A. Catena, L. G. Miller and D. G. Capone. 1986. Metabolism of reduced methylated sulfur compounds in anaerobic sediments and by a pure culture of an estuarine methanogen. Appl. Environ. Microbiol. 52: 1037–1045.

    PubMed  CAS  Google Scholar 

  28. Kiene, R. P. andB. F. Taylor. 1988. Demethylation of dimethylsulfoniopropionate and production of thiols in anoxic marine sediments. Appl. Environ. Microbiol. 54: 2208–2212.

    PubMed  CAS  Google Scholar 

  29. Ledyard, K. M., and J. W. H. Dacey. 1996. Kinetics of DMSP-lyase activity in coastal seawater. In R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (ed.), Biological and environmental chemistry of DMSP and related sulfonium compounds. Plenum, New York.

    Google Scholar 

  30. Ledyard, K. M. and J. W. H. Dacey. 1994. Dimethyl sulfide production from dimethylsulfoniopropionate by a marine bacterium. Mar. Ecol. Progr. Ser. 110: 95–103.

    Article  CAS  Google Scholar 

  31. Ledyard, K. M., E. F. DeLong and J. W. H. Dacey. 1993. Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch. Microbiol. 160: 312–318.

    Article  CAS  Google Scholar 

  32. Moller, B., R. Ossmer, B. H. Howard, G. Gottschalk and H. Hippe. 1984. Sporomusa, a new genus of gram-negative anaerobic bacteria including Sporomusa sphaeroides sp. nov. and Sporomusa ovata sp. nov. Arch. Microbiol. 139: 388–396.

    Article  Google Scholar 

  33. Mopper, K. and B. F. Taylor. 1986. Biogeochemical cycling of sulfur: thiols in coastal marine sediments, pp. 324–339. In M. Sohn (ed.), Organic Marine Geochemistry. American Chemical Society, Washington, D.C.

    Chapter  Google Scholar 

  34. Naumann, E., H. Hippe and G. Gottschalk. 1983. Betaine: a new oxidant in the Stickland reaction and methanogenesis from betaine and L-alanine by a Clostridium sporogenes-Methanosarcina barkeri cocul-ture. Appl. Environ. Microbiol. 45: 474–483.

    PubMed  CAS  Google Scholar 

  35. Neidleman, S. L. and J. Geigert. 1986. Biohalogenation: Principles, basic rules and applications. Wiley, New York.

    Google Scholar 

  36. Rhodes, D. and A. D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44: 357–384.

    Article  CAS  Google Scholar 

  37. Sieburth, J. M. 1960. Acrylic acid, an “antibiotic” principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.

    Article  PubMed  CAS  Google Scholar 

  38. Sieburth, J. M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J. Bacteriol. 82: 72–79.

    PubMed  CAS  Google Scholar 

  39. Stefels, J. and W. H. M. van Boekel. 1993. Production of DMS from disolved DMSP in axenic cultures of the marine phytoplankton species Phaeocystis sp. Mar. Ecol. Progr. Ser. 97: 11–18.

    Article  CAS  Google Scholar 

  40. Tammoto, Y. and F. Bak. 1994. Anaerobic degradation of methylmercaptan and dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria. Appl. Environ. Microbiol. 60: 2450–2455.

    Google Scholar 

  41. Taylor, B. F. and D. C. Gilchrist. 1991. New routes for the aerobic biodegradation of dimethylsulfoniopropionate. Appl. Environ. Microbiol. 57: 3581–3584.

    PubMed  CAS  Google Scholar 

  42. Taylor, B. F., G. E. Hunkele and R. Baynard. 1993. Methanethiol formation from from 3-methiolpropion-ate and S-methylcysteine by marine bacteria. Annu. Gen. Meet. Amer. Soc. Microbiol. Abstract Q40, p. 353.

    Google Scholar 

  43. Taylor, B. F. Unpublished data.

    Google Scholar 

  44. Taylor, B. F. and D. C. Gilchrist. Unpublished data.

    Google Scholar 

  45. Tholozan, J. L., J. P. Touzel, E. Samain, J. P. Grivet, G. Prensier and G. Albagnac. 1992. Clostridium neopropionicum sp. nov., a strict anaerobic bacterium fermenting ethanol to propionate through acrylate pathway. Arch. Microbiol. 157: 249–257.

    Article  PubMed  CAS  Google Scholar 

  46. Thompson, A. S., N. J. P. Owens and J. C. Murreil. 1995. Isolation and characterization of methanesulfonic acid-degrading bacteria from the marine environment. Appl. Environ. Microbiol. 61: 2388–2393.

    PubMed  CAS  Google Scholar 

  47. Vairavamurthy, A., M. O. Andreae and R. L. Iverson. 1985. Biosynthesis of dimethyl sulfide and dimethylsulfoniopropionate by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanogr. 30: 59–70.

    Article  CAS  Google Scholar 

  48. van der Maarel, M. J. E. C., and T. A. Hansen. 1996. Anaerobic microorganisms involved in the degradation of DMS(P). In Biological and environmental chemistry of DMSP and related sulfonium compounds. R. P. Kiene, P. T. Visscher, M. D. Keller, and G. O. Kirst (eds.), Plenum Press, New York. p. 351–360.

    Google Scholar 

  49. van der Maarel, M. J. E. C., M. Jansen and T. A. Hansen. 1995. Methanogenic conversion of 3–S-methyl-mercaptopropionate to 3-mercaptopropionate. Appl. Environ. Microbiol. 61: 48–51.

    PubMed  Google Scholar 

  50. van der Maarel, M. J. E. C., P. Quist, L. Dijkhuizen and T. A. Hansen. 1993. Anaerobic degradation of dimethylsulfoniopropionate to 3-S-methylmercaptopropionate by a marine Desulfobacterium strain. Arch. Microbiol. 160: 411–412.

    Article  Google Scholar 

  51. Visscher, P. T. and B. F. Taylor. 1993. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium. Appl. Environ. Microbiol. 59: 4083–4089.

    PubMed  CAS  Google Scholar 

  52. Visscher, P. T. and B. F. Taylor. 1993. A new mechanism for the aerobic catabolism of dimethyl sulfide. Appl. Environ. Microbiol. 59: 3784–3789.

    PubMed  CAS  Google Scholar 

  53. Visscher, P. T. and B. F. Taylor. 1994. Demethylation of dimethylsulfoniopropionate to 3-mercaptopropionate by an aerobic marine bacterium. Appl. Environ. Microbiol. 60.4617–4619.

    PubMed  CAS  Google Scholar 

  54. Visscher, P. T. and B. F. Taylor. 1993. Organic thiols as organolithotrophic substrates for growth of phototrophic bacteria. Appl. Environ. Microbiol. 59: 93–96.

    PubMed  CAS  Google Scholar 

  55. Visscher, P. T. and B. F. Taylor. Unpublished data.

    Google Scholar 

  56. Visscher, P. T. and H. van Gemerden. 1991. Photoautotrophic growth of Thiocapsa roseopersicina on dimethyl sulfide. FEMS Microbiol. Lett. 81: 247–250.

    Article  CAS  Google Scholar 

  57. Wackett, L. P., J. F. Honek, T. P. Begley, V. Wallace, W. H. Orme-Johnson and C. T. Walsh. 1987. Substrate analogues as mechanistic probes of methyl-S-coenzyme M reductase. Biochemistry 26: 6012–6018.

    Article  PubMed  CAS  Google Scholar 

  58. Wagner, C. and E. R. Stadtman. 1962. Bacterial fermentation of dimethyl-ß-propiothetin. Arch. Biochem. Biophys. 98: 331–336.

    Article  PubMed  CAS  Google Scholar 

  59. Wood, J. M., F. S. Kennedy and R. S. Wolfe. 1968. The reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7: 1707–1713.

    Article  PubMed  CAS  Google Scholar 

  60. Yancey, P. H., M. E. Clark, S. C. Hand, R. D. Bowlus and G. N. Somero. 1982. Living with water stress: evolution of osmolyte systems. Science 277: 1214–1222.

    Article  Google Scholar 

  61. Zeyer, J., P. Eicher, S. G. Wakeham and R. P. Schwarzenbach. 1987. Oxidation of dimethyl sulfide to dimethyl sulfoxide by phototrophic purple bacteria. Appl. Environ. Microbiol. 53: 2026–2032.

    PubMed  CAS  Google Scholar 

  62. Zhang, L., I. Kuniyoshi, M. Hirai and M. Shoda. 1991. Oxidation of dimethyl sulfide by Pseudomonas acidovorans DMR–11 isolated from peat biofilter. Biotechnol. Lett. 13: 223–228.

    Article  CAS  Google Scholar 

  63. de Zwart, J. M. M. and J. G. Kuenen. 1992. C1cycle of sulfur compounds. Biodegradation 3: 37–59.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Taylor, B.F., Visscher, P.T. (1996). Metabolic Pathways Involved in DMSP Degradation. In: Kiene, R.P., Visscher, P.T., Keller, M.D., Kirst, G.O. (eds) Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0377-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0377-0_23

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-45306-9

  • Online ISBN: 978-1-4613-0377-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics