Application of Mass Spectrometry to the Analysis of Natural and Synthetic Sulfated Oligosaccharides

  • Luigi Silvestro
  • Simona Rizea Savu
  • P. A. van Veelen
  • P. L. Jacobs

Abstract

After the discovery of heparin in 1922 (1) a large series of sulfated polysaccharides was identified in biological systems (2). The biological and pharmacological activities of these compounds, e.g. the anticoagulant effects of heparin, are particularly complex (3). The chemical structures of such polysaccharides are closely related to their actions as confirmed by the identification of clear structure-activity relationships (4). In recent years the development of refined techniques of carbohydrate synthesis (5) opened up the possibility to produce synthetic sulfated oligosaccharides; some of them presenting relevant pharmacological activities (6).

Keywords

Cellulose Glycerol Polysaccharide Enzymatic Degradation Dextran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Heparin, an anticoagulant: preliminary communication. W.H. Howell. Am. J. Physiol. 63, 434–435 (1922).Google Scholar
  2. 2.
    Mammalian glycosaminoglycans. L.A. Fransson, New York: Academic Press (1985).Google Scholar
  3. 3.
    The pharmacology of heparin and heparinoides. L.B. Jaques. Prog. Med. Chem. 5, 139–198 (1967).PubMedCrossRefGoogle Scholar
  4. 4.
    Antithrombin and related inhibitors of coagulation proteinases. I. Bjork and A. Danielsson in “Proteinase inhibitors” eds. A.J. Barrett and G. Salveson Amsterdam: Elsevier Science Publishing Co. Inc. (1986).Google Scholar
  5. 5.
    The Unique Antithrombin III Binding Domain of Heparin: A Lead to New Synthetic Antithrombotics. C.A.A. van Boeckel and M. Petitou, Angew. Chem. Int. Ed. Engl. 32, 1671 (1993).CrossRefGoogle Scholar
  6. 6.
    Rational Design of Synthetic Glycoconjugates With Tailor-made Coagulation Factor Inhibiting Activity. P.D.J. Grootenhuis, P. Westerduin, D. Meuleman, M. Petitou and C.A.A. van Boeckel, Nature Struct. Biol., 1995, in publ.Google Scholar
  7. 7.
    Characterization and separation of sulfated glycosaminoglycans. Johnson E. A. Pharmacological Research Communications 14, 289–320 (1982).PubMedCrossRefGoogle Scholar
  8. 8.
    Electrophoretic and nuclear magnetic resonance characterization of non-heparin glycosaminoglycans. Torri G.G. Semin. Thromb. Hemost. 17 (suppl. 1), 23–28 (1991).PubMedGoogle Scholar
  9. 9.
    Carbohydrates. J.P. Kamerling and J.F.G. Vliegenthart in “Mass spectrometry” ed. A.M. Lawson New York: Walter de Gruyter (1989).Google Scholar
  10. 10.
    Calibration in Positive and Negative Ion Fast Atom Bombardment Using Salt Mixtures. K. Vékey, Org. Mass Spectrom., 24, 183 (1989).CrossRefGoogle Scholar
  11. 11.
    Enhanced Sensitivity of Peptide Analysis by Fast-atom Bombardment Mass Spectrometry Using Nitrocellulose as a Substrate. R.B. van Breemen and J.C. Le, Rapid Comm. Mass Spectrom., 3, 20 (1989).CrossRefGoogle Scholar
  12. 12.
    Structural characterization of sulfated glycosaminoglycans by fast atom bombardment mass spectrometry: application to chondroitin sulfate. S.A. Carr and V.N. Reinhold, J. Carbohydr. Chem., 3, 381 (1984)Google Scholar
  13. 13.
    Structure of heparin-derived tetrasaccharides. Z.M. Merchant, YS. Kim, K.G. Rice and R.J. Linhardt, Biochem. J., 229, 369 (1985).PubMedGoogle Scholar
  14. 14.
    Structural studies on the Bacterial Lyase-resistant Tetrasaccharides Derived from the Antithrombin III-binding Site of Porcine Intestinal Heparin. S. Yamada, K. Yoshida, M. Sogiura, K. Sugahara, K-H. Khoo, H.R. Morris and A. Dell, J. Biol. Chem. 268, 4780 (1993).PubMedGoogle Scholar
  15. 15.
    Structural studies on the tri-and tetrasaccharides isolated from porcine intestinal heparin and characterization of heparinase/heparitinases using them as substrates. S. Yamada, K. Sakamoto, H. Tsuda, K. Yoshida, K. Sugahara, K-H. Khoo, H.R. Morris and A. Dell, Glycobiology 4, 69 (1994).PubMedCrossRefGoogle Scholar
  16. 16.
    Fast Atom Bombardment Mass Spectrometry of Heparin-Derived, Highly Sulfated Oligosaccharides. L.M. Mallis, H.M. Wang and R.J. Linhardt, Proc. of the 36th ASMS Conference on Mass Spectrometry and Allied Topics, June 5–10, San Francisco CA, 1291 (1988).Google Scholar
  17. 17.
    Sequence Analysis of Highly Sulfated, Heparin-Derived Oligosaccharides Using Fast Atom Bombardment Mass Spectrometry. L.M. Mallis, H.M. Wang, D. Loganathan and R.J. Linhardt, Anal. Chem. 61, 1453 (1989).PubMedCrossRefGoogle Scholar
  18. 18.
    Oligosaccharide Mapping of Low Molecular Weight Heparins: Structure and Activity Differences. R.J. Linhardt, D. Loganathan, A. Al-Hakim, H-M. Wang, J.M. Walenga, D. Hoppensteadt and J. Fareed, J. Med. Chem., 33, 1639 (1990).PubMedCrossRefGoogle Scholar
  19. 19.
    Analysis of glycosaminoglycan-derived oligosaccharides using fast-atom bombardment mass-spectrome-try. R.J. Linhardt, H.M. Wang, D. Loganathan, D.J. Lamb and L.M. Mallis, Carbohydr. Res. 225, 137 (1992).PubMedCrossRefGoogle Scholar
  20. 20.
    Characterisation of disaccharide fragments from the enzymatic digestion of heparin by liquid secondary ion mass spectrometry. B.E. Brandau, P. Fonrobert, M. Przybylski and H.J. Roth, Fresenius Z. Anal. Chem. 331, 55 (1988).CrossRefGoogle Scholar
  21. 21.
    Structural characterization of sulfated glycosaminoglycans by fast atom bombardment mass spectrometry: application to heparin fragments prepared by chemical synthesis. V.N. Reinhold, S.A. Carr, B.N. Green, M. Petitou, J. Choay and P. SinaŸ, Carbohydr. Res., 161, 305 (1987).PubMedCrossRefGoogle Scholar
  22. 22.
    Negative Ion Fast-Atom Bombardment Tandem Mass Spectrometry To Determine Sulfate and Linkage Position in Glycosaminoglycan-Derived Disaccharides. D.J. Lamb, H.M. Wang, L.M. Mallis and R.J. Linhardt, J. Am. Soc. Mass Spectrom. 3, 797 (1992).CrossRefGoogle Scholar
  23. 23.
    Tandem Mass Spectrometry for characterization of unsaturated disaccharides from chondroitin sulfate, dermatan sulfate and hyaluronan. T. Ii, S. Okuda, T. Hirano and M. Ohashi, Glycoconjugate Journal 11, 123 (1994).PubMedCrossRefGoogle Scholar
  24. 24.
    Positive-ion fast atom bombardment tandem mass spectrometry for characterization of sulfated unsaturated disaccharides from heparin and heparan sulfate. T. Ii, M. Kubota, S. Okuda, T. Hirano and M. Ohashi, Eur. Mass Spectrom. 1, 11 (1995).CrossRefGoogle Scholar
  25. 25.
    Negative-ion fast atom bombardment tandem mass spectrometry for characterization of sulfated unsaturated disaccharides from heparin and heparan sulfate. T. Ii, M. Kubota, S. Okuda, T. Hirano and M. Ohashi, Glycoconjugate Journal 12, 162 (1995).PubMedCrossRefGoogle Scholar
  26. 26.
    TLC-LSIMS of neoglycolipids of glycosaminoglycan disaccharides and of oxymercuration cleavage products of heparin fragments that contain unsaturated uronic acid. Chai W., Rosankiewicz J, Lawson A. and Alexander M., Carbohydr. Res. 269, 111 (1995).PubMedCrossRefGoogle Scholar
  27. 27.
    FAB-MS/derivatisation strategies for the analysis of heparin-derived oligosaccharides. K-H. Khoo, H.R. Morris, R.A. McDowell, A. Dell, M. Maccarana and U. Lindahl, Carbohydr. Res. 244, 205 (1993).PubMedCrossRefGoogle Scholar
  28. 28.
    Characterization of sulfated glycosaminoglycans by negative liquid secondary ion Mass Spectrometry: Application to synthetic Heparin fragments. C. Ponthus, M. Petitou, J.C. Lormeau and C. Picard, Second Int. Symp. on Applied Mass Spectrometry in the Health Sciences, April 17–20, Barcelona, Abstract. No.f.4–4, (1990).Google Scholar
  29. 29.
    Fast Atom Bombardment Mass Spectrometry of Sulfated metabolites of the Steroid Org OD 14 Using a Glycerol Matrix Saturated with Tetramethylammonium Hydroxide. P.L. Jacobs, G.J.H. Schmeits, M.P. de Vries, L.P.C. Delbressine and H.A.M. Peters, Biol. Mass Spectrom. 21 491 (1992).CrossRefGoogle Scholar
  30. 30.
    The analysis of synthetic sulfated pentasaccharides: FAB-MS, 252Cf-PDMS and Ion Spray MS compared. P.L. Jacobs, G.J.H. Schmeits, M.P. de Vries, A.P. Bruins and P.S.L. Janssen, Ext. Abstr. 12th Int. Mass Spectrom. Conf., August 26–30, Amsterdam, 246 (1991).Google Scholar
  31. 31.
    A Novel Mass Spectrometric Procedure To Rapidly Determine The Partial Structure Of Heparin Fragments. C.J. McNeal, R.D. MacFarlane and I. Jardine, Biochem. Biophys. Res. Commun., 139, 18 (1986).PubMedCrossRefGoogle Scholar
  32. 32.
    New approach to the mass spectroscopy of non-volatile compounds.. D.F. Torgerson, R.P. Skowronski, R.D. Macfarlane, Biochem. Biophys. Res. Commun. 60, 616 (1974).PubMedCrossRefGoogle Scholar
  33. 33.
    Structure and Activity of a Unique heparin-derived Hexasaccharide. R.J. Linhardt, K.G. Rice, Z.M. Merchant, Y.S. Kim and D.L. Lohse, J. Biol. Chem., 261, 14448 (1986).PubMedGoogle Scholar
  34. 34.
    HPLC-MS/MS analysis of oligosaccharides from enzymatic digestion of glycosaminoglycans using an ionspray interface. L. Silvestro, A. Naggi, R. Da Col, C. Baiocchi, G. Torri, and I. Viano. Abstr. of the 8th (Montreaux) Symposium on Liquid Chromatography/ Mass Spectrometry (LC/MS; SFC/MS; CE/MS; IC/MS) July 17–19, Ithaca USA (1991):Google Scholar
  35. 35.
    High-performance liquid chromatographic-mass spectrometric analysis of oligosaccharides from enzymatic digestion of glycosaminoglycans. An application to human samples. L. Silvestro, I. Viano, A. Naggi, G. Torri, R. Da Col and C. Baiocchi. J. Chromatogr. 591, 225–232 (1992).PubMedCrossRefGoogle Scholar
  36. 36.
    Electrospray Ionization Mass Spectrometry of highly sulfated Heparin Oligosaccharides. J. Herrman, K.L. Johnson, H. Schweingruber and M. Moreland, Proc. of the Kyoto ’92 Int. Conf. on Biological Mass Spectrometry, Sept. 20–24, Kyoto, 318 (1992).Google Scholar
  37. 37.
    Ion-spray mass spectrometric analysis of glycosaminoglycan oligosaccharides. K. Takagaki, K. Kojima, M. Majima, T. Nakamura, I. Kato and M. Endo, Glycoconjugate Journal 9, 174 (1992).PubMedCrossRefGoogle Scholar
  38. 38.
    Characterization of the chemical structure of sulfated glycosaminoglycans after enzymatic digestion. Application of liquid chromatography-mass spectrometry with an atmospheric pressure interface. R. Da Col, L. Silvestro, A. Naggi, G. Torri, C. Baiocchi, D. Moltrasio, A. Cedro and I. Viano. J. Chromatogr. 647, 289–300 (1993).PubMedCrossRefGoogle Scholar
  39. 39.
    Active sites of dermatan sulfate for heparin cofactor II. Isolation of a nonasaccharide fragment containing four disaccharide sequences. G. Mascellani, L. Liverani, A. Prete, G.L. Bergonzini, P. Bianchini, L. Silvestro, G. Torri, A. Bisio, P. Bianchini, M. Guerrini and B. Casu. Submitted to Journal of carbohydrate chemistry (1995).Google Scholar
  40. 40.
    Analysis of Glycosaminoglycan-Derived Oligosaccharides Using Reversed-Phase Ion-Pairing and Ion-Exchange Chromatography with Suppressed Conductivity Detection. R.J. Linhardt, K.N. Gu, D. Loganathan and S.R. Carter, Anal. Chem. 181, 288 (1989).Google Scholar
  41. 41.
    Electrospray Mass Spectrometry of Heparin Oligosaccharides. W. Chai, B.N. Green and A.M. Lawson, Proc. of the 41st ASMS Conference on Mass Spectrometry and Allied Topics, San Francisco, May 31-June 4, 85 (1993).Google Scholar
  42. 42.
    Human pharmacokinetics of glycosaminoglycans using deuterium-labelled and unlabelled substances: evidence for oral absorption. L. Silvestro, E. Lanzarotti, E. Marchi, M. Gori, R. Pescador, L. Ferro, M.R. Milani, R. Da Col and A Coppini. Seminars Thromb. Hemost. 20, 281–292 (1994).CrossRefGoogle Scholar
  43. 43.
    Mass spectrometric molecular-weight determination of highly acidic compounds of biological significance via their complexes with basic polypeptides. P. Juhasz and K. Biemann, Proc. Natl. Acad. Sci. U.S.A. 91, 4333 (1994).PubMedCrossRefGoogle Scholar
  44. 44.
    Utility of non-covalent complexes in the matrix-assisted laser desorption ionization mass spectrometry of heparin-derived oligosaccharides. P. Juhasz and K. Biemann, Carbohydr. Res., 270, 131 (1995).PubMedCrossRefGoogle Scholar
  45. 45.
    Matrix-assisted Laser Desorption Mass Spectrometry of synthetic Heparin analogues. P.A. van Veelen, H.A.M. Peters and P.L. Jacobs, Third Int. Symp. on Applied Mass Spectrometry in the Health Sciences, and third European Tandem Mass Spectrometry Conference, Barcelona, July 9–13, 1995.Google Scholar
  46. 46.
    Separation of natural and synthetic heparin fragments by high-performance capillary electrophoresis. J.B.L. Damm, G.T. Overklift, B.W.M. Vermeulen, C.F. Fluitsma and G.W.K. van Dedem, J. Chromatogr. 608, 297(1992).PubMedCrossRefGoogle Scholar
  47. 47.
    Determination of structural differences in the glycosaminoglycan chains of heparin and heparan sulfate by analysis of the constituting disaccharides with capillary electrophoresis. J.B.L. Damm, G.T. Overklift and G.W.K. van Dedem, Pharm. Pharmacol. Lett 3, 156 (1993).Google Scholar
  48. 48.
    Determination of absolute amounts of heparin and of dextran sulfate in plasma in microgram quantities. L.B. Jaques, S.M. Wice and L.M. Hiebert. The Journal of Laboratory and Clinical Medicine 115, 422–432 (1990).PubMedGoogle Scholar
  49. 49.
    Direct observation of the non-covalent complex between human Antithrombin III and its Heparin binding sequence by Capillary Electrophoresis and Electrospray Mass Spectrometry. A. Tuong, F. Uzabiaga, M. Petitou, J.C. Lormeau and C. Picard, Carbohydr. Lett. 1, 55 (1994).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Luigi Silvestro
    • 1
  • Simona Rizea Savu
    • 1
  • P. A. van Veelen
    • 2
  • P. L. Jacobs
    • 2
  1. 1.Institut für Biomedizinische und Pharmazeutische ForschungIBMPNürnberg-HeroldsbergGermany
  2. 2.N.V. Organon, Scientific Development GroupAKZO NOBELOssThe Netherlands

Personalised recommendations