Advertisement

DT Neutron Measurements and Experience on TFTR

  • Cris W. Barnes
  • Hau H. Duong
  • D. L. Jassby
  • L. C. Johnson
  • A. R. Larson
  • G. LeMunyan
  • M. J. Loughlin
  • A. L. Roquemore
  • S. Sesnic
  • J. D. Strachan
  • S. von Goeler
  • G. A. Wurden

Abstract

Through semi-independent absolute calibrations of multiply redundant neutron detector systems, the Tokamak Fusion Test Reactor (TFTR) has achieved ±7%(one-sigma) accuracy in its fusion power measurements.This has required careful attention to the linearity of detectors up to the present highest fusion power levels achieved on TFTR of over 10 MW. The extended duration of the DT program on TFTR has also tested the stability of the detector systems. These issues of calibration, linearity, and stability will be reviewed for the TFTR experience and how it can be applied to plans for ITER.

Keywords

Neutron Yield Source Strength Neutron Detector Absolute Calibration Fusion Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. D. Strachan et al Fusion power production from TFTR plasmas fueled with deuterium and tritium, Phys. Rev. Letts. 72 1994 3526.Google Scholar
  2. 2.
    C. W. Barnes, A. R. Larson, and A. L. Roquemore. Calculations of neutron activation response for the Tokamak Fusion Test Reactor, and absolute calibrations of neutron yield, (submitted to Fusion Tech., 1995).Google Scholar
  3. 3.
    D. L. Jassby et al Absolute calibration of tokamak fusion test reactor neutron detectors for D-T plasma operation, Rev. Sci. Instrum. 66 1995 891Google Scholar
  4. 4.
    L. C. Johnson et alCross calibration of neutron detectors for deuterium-tritium operation in TFTR, Rev. Sci. Instrum. 66 1995 894Google Scholar
  5. 5.
    0wen N. Jarvis et al Use of activation techniques for the measurement of neutron yields from deuterium plasmas at the Joint European Torus, Fusion Tech. 20 1991 265.Google Scholar
  6. 6.
    H. W. Hendel, R. W. Palladino, Cris W. Barnes, M. Diesso, J. S. Felt, D. L. Jassby, L. C. Johnson, L.-P. Ku, Q. P. Liu, R. W. Motley, H. B. Murphy, J. Murphy, E. B. Nieschmidt, J. A. Roberts, T. Saito, J. D. Strachan, R. J. Waszazak, and K. M. Young. In situ calibration of TFTR neutron detectors, Rev. Sci. Instrum., 61 1990 1900.Google Scholar
  7. 7.
    D. L. Jassby, H. W. Hendel, and H.-S. Bosch. Relative intensities of 2.5- and 14-MeV source neutrons from comparative responses of U-235 and U-238 detectors. Rev. Sci. Instrum. 59 1988 1688.Google Scholar
  8. 8.
    The so-called NE3 (a 235U detector) current mode signal.Google Scholar
  9. 9.
    E. Ruskov, W. W. Heidbrink, H. H. Duong, A. L. Roquemore, and J. D. Strachan. Measurement of 14 MeV neutrons at TFTR with Si-diode detectors, Rev. Sci. Instrum., 66 1995 910.Google Scholar
  10. 10.
    C. W. Barnes, A. R. Larson, G. L. LeMunyan, and M. J. Loughlin. Measurements of DT and DD neutron yields by neutron activation on the Tokamak Fusion Test Reactor, Rev. Sci. Instrum., 66 1995 888.Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Cris W. Barnes
    • 2
  • Hau H. Duong
    • 3
  • D. L. Jassby
    • 1
  • L. C. Johnson
    • 1
  • A. R. Larson
    • 2
  • G. LeMunyan
    • 1
  • M. J. Loughlin
    • 4
  • A. L. Roquemore
    • 1
  • S. Sesnic
    • 1
  • J. D. Strachan
    • 1
  • S. von Goeler
    • 1
  • G. A. Wurden
    • 2
  1. 1.Princeton Plasma Physics LaboratoryPrincetonUSA
  2. 2.Los Alamos National LaboratoryLos AlamosUSA
  3. 3.General Atomics ORAU fellowUSA
  4. 4.JET Joint UndertakingAbingdon, OxonUK

Personalised recommendations