Advertisement

Advantages and Limitations of Microwave Diagnostics in ITER

  • A. J. H. Donné
  • B. C. Schokker

Abstract

Microwave diagnostics are widely applied to study the parameters of, in particular, the electron distribution in magnetically confined plasmas. Thanks to their high accuracy, their good spatial and temporal resolution as well as some other advantageous properties, microwave diagnostics are considered as candidate measuring techniques for a large number of different parameters of the ITER plasma, including many category I parameters for machine protection and performance control. Microwave techniques that appear on the list of ITER candidate diagnostics are electron cyclotron emission (ECE) and -absorption (ECA), reflectometry, interferometry, polarimetry and ion (collective) Thomson scattering.

Keywords

Density Profile Electron Density Profile Waveguide System Electron Cyclotron Emission High Field Side 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Tartan, Collective microwave scattering applications to ITERThese proceedings Google Scholar
  2. 2.
    M. Bornatici, R. Cano, O. De Barbieri and F. Engelmann, Electron cyclotron emission and absorption infusion plasmasNucl. Fusion23: 1153 (1983).CrossRefGoogle Scholar
  3. 3.
    I. Hutchinson, “Principles of Plasma Diagnostics”, Cambridge University Press, Cambridge (1987).Google Scholar
  4. 4.
    D.V. Bartlett, Physics issues of ECE and ECA for ITERThese proceedings Google Scholar
  5. 5.
    B.C. Schokker, Feasibility study of ECE measurements at ITERsubmitted to Plasma Phys. Contr. Fusion Google Scholar
  6. 6.
    H. Hartfuss, Instrumentation of ECE for ITERThese proceedings Google Scholar
  7. 7.
    Y. Michelot et al., Electron temperature measurements by microwave transmission in Tore Supra, Proc. 21st EPS Conf. on Contr. Fusion and Plasma Phys., Montpellier (1994) Vol. III, p. 1208.Google Scholar
  8. 8.
    R. Prentice et al New microwave measurements of electron density and temperature in the JET divertorProc. 22nd EPS Conf. on Contr. Fusion and Plasma Phys. Bournemouth (1995) to be published.Google Scholar
  9. 9.
    J.F.M. van Gelderet al Diagnosis of nonthermal ECE by means of LFS ECE, HFS ECE and ECA measurementsProc. 22nd EPS Conf. on Contr. Fusion and Plasma Phys Bournemouth (1995) to be published.Google Scholar
  10. 10.
    . M.E. Manso, Reflectometry in fusion devicesPlasma Phys. Contr. Fusion35: B141 (1993).CrossRefGoogle Scholar
  11. 11.
    E. Doyleprivate communication Google Scholar
  12. 12.
    H. Bindslev, Relativistic expressions for plasma cutoffsPlasma Phys. Contr. Fusion35: 1093 (1993).CrossRefGoogle Scholar
  13. 13.
    C. Laviron, Comparison of different reflectometer techniquesThese proceedings Google Scholar
  14. 14.
    A.J.H. Donné, High spatial resolution interferometry and polarimetry in hot plasmasRev. Sci. Instrum66: 3407 (1995).CrossRefGoogle Scholar
  15. 15.
    R. Snider, Interferometry applications to ITERThese proceedings Google Scholar
  16. 16.
    S.H. Heijnen et al Measuring the line-averaged density by the time delay of short microwave pulsesProc. 22nd EPS Conf. on Contr. Fusion and Plasma Phys. Bournemouth (1995) to be published.Google Scholar
  17. 17.
    . P. Buratti, O. Tudisco and M. Zerbini, A broadband light collection system for ECE diagnostics on the FTU tokamakInfrared Phys. 34: 533 (1993).CrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • A. J. H. Donné
    • 1
  • B. C. Schokker
    • 1
  1. 1.FOM-Instituut voor Plasmafysica RijnhuizenAssociatie EURATOM-FOMNieuwegeinThe Netherlands

Personalised recommendations