A Clusterization Model for BUU Calculations

  • E. J. Garcia-Solis
  • A. C. Mignerey

Abstract

A clustering model that allows the recognition of mass fragments from dynamical simulations has been developed. Studying the evolution of a microscopic computation based on the nuclear-Boltzmann transport equation, a suitable time is chosen to identify the bound clusters. At this “stopping” time the number of binding surfaces for each test nucleon is found. Based on the number of nucleon bindings the interior nucleons are identified, and the cluster kernels are formed. An iterative routine is then applied to determine the coalescence of surrounding free nucleons. Once the fragment formation has been established, a statistical decay code is used to determine the final fragment distributions. Applications are given for the two systems 139La on 27Al, 139La on nat Cu at 45 MeV/nucleon, with model predictions compared to experimental data. An overall agreement between the calculations and the experiment is found.

Keywords

Lime Lori Dala 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. F. Bertsch and S. Das Gupta, Phys. Rep. 160 (1988) 190.ADSCrossRefGoogle Scholar
  2. 2.
    M. Colonna, M. DiToro, V. Latora and A. Smerzi, Prog. Part. Phys. 30 (1993) 17.ADSCrossRefGoogle Scholar
  3. 3.
    C. Dorso and J. Randrup, Phys. Lett. B 301 (1993) 328.ADSCrossRefGoogle Scholar
  4. 4.
    M. Colonna, P. Roussel-Chomaz, N. Colona, M. DiToro, L. G. Moretto and G. J. Wozniak, Phys. Lett. B 283 (1992) 180.ADSCrossRefGoogle Scholar
  5. 5.
    A. Ono, H. Horiuchi, T. Maruyama and A. Ohnishi, Progress of Theoretical Physics 87 (1992) 1185.ADSCrossRefGoogle Scholar
  6. 6.
    G. Batko and J. Randrup, Nucl. Phys. A 563 (1993) 97.ADSCrossRefGoogle Scholar
  7. 7.
    W. Cassing, V. Metag, U. Mosel and K. Niita, Phys. Reports 188 (1990) 363.ADSCrossRefGoogle Scholar
  8. 8.
    R. J. Charity, M. A. McMahan, G. J. Wozniak, R. J. McDonald, L. G. Moretto, D. G. Sarantites, L. G. Sobotka, G. Guarino, A. Pantaleo, L. Fiore, A. Gobbi and K. D. Hildenbrand, Nucl. Phys. A483 (1988) 371.ADSGoogle Scholar
  9. 9.
    H. Hauser and H. Feshbach, Phys. Rev. 87 (1952) 366.ADSMATHCrossRefGoogle Scholar
  10. 10.
    L. G. Moretto, Nucl. Phys. A247 (1971) 211.ADSGoogle Scholar
  11. 11.
    Bao-An Li, W. Bauer and George F. Beretsch, Phys. Rev. C 44 (1991) 2095.ADSCrossRefGoogle Scholar
  12. 12.
    D. R. Bowman, C. M. Mader, G. F. Peaslee, W. Bauer, N. Carlin, R. T. de Souza, C. K. Gelbke, W. G. Gong, Y. D. Kim, M. A. Lisa, W. G. Lynch, L. Phair, M. B. Tsang, C. Williams, N. Colonna, K. Hanold, M. A. McMahan, G. J. Wozniak, L. G. Moretto, W. A. Friedman, Phys. Rev. C46 (1992) 8834.Google Scholar
  13. 13.
    L. Phair, W. Bauer and C. K. Gelbke, Phys. Lett. B 314 (1993) 271.ADSCrossRefGoogle Scholar
  14. 14.
    J. P. Whitfield and N. T. Porile, Phys. Rev. C 49 (1994) 304.ADSCrossRefGoogle Scholar
  15. 15.
    M. Colonna, N. Colonna, A. Bonasera, and M. DiToro, Nucl. Phys. A541 (1992) 295.ADSGoogle Scholar
  16. 16a.
    R. J. Charity, Nucl. Phys. A483 (1988) 371;ADSGoogle Scholar
  17. 16b.
    R. J. Charity, Nucl. Phys. A511 (1990) 59.ADSGoogle Scholar
  18. 17.
    J. Randrup and G. Batko, Prog. in Part. and Nucl. Phys. 30 (1993) 117.ADSCrossRefGoogle Scholar
  19. 18.
    V. M. Kolybasov and Yu. N. Solokol’skikh, Sov. J. Nucl. Phys. 55 (1992) 1148.Google Scholar
  20. 19.
    P. Roussel-Chomaz, N. Colonna, Y. Blumenfeld, B. Libby, G. F. Peaslee, D. N. Delis, K. Hanold, M. A. McMahan, J. C. Meng, Q. C. Sui, G. J. Wozniak and L. G. Moretto, H. Madani, A. A. Marchetti, A. C. Mignerey, G. Guarino, N. Santoruvo, I. Iori, and S. Bradley, Nucl. Phys. A551 (1993) 508.ADSGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • E. J. Garcia-Solis
    • 1
  • A. C. Mignerey
    • 1
  1. 1.Chemistry DepartmentUniversity of MarylandCollege ParkUSA

Personalised recommendations