Advertisement

Detection And Identification of Clostridium botulinum Neurotoxins

  • Charles L. Hatheway
  • Joseph L. Ferreira
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 391)

Abstract

Botulism is a serious neuroparalytic illness that affects humans and various domestic and wild animal and avian species. It is due to the neurotoxic effect of a toxin produced by the anaerobic bacterium Clostridium botulinum. Botulism is most commonly known as a foodborne intoxication of humans; it also can result from growth of the toxigenic organism in a wound or, in the case of infant botulism, from colonization of the intestinal tract.

Keywords

Botulinum Toxin Toxin Gene Botulinum Neurotoxin Clostridium Botulinum Mouse Bioassay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aureli, P., Fenicia, L., Pasolini, B., Gianfranceschi, M., McCroskey, L.M., and Hatheway, C.L., 1986, Two cases of type E infant botulism caused by neurotoxigenic Clostridium butyricum in Italy, J. Infect. Dis. 154: 201 – 206.Google Scholar
  2. 2.
    Bluestone, B.I., Craig, M., Slovacek, R., Stundtner, L., Urciuoli, C, Walczak, I., and Luderer, A., Evanescent wave immunosensors for clinical diagnosis, in: “Biosensors with Fiberoptics,” Wise, D.L., and Wingard, L.B., Jr., eds., Humana Press, Clifton, New Jersey (1991).Google Scholar
  3. 3.
    Boroff, D.A., and Fleck, U., 1966, Statistical analysis of a rapid in vitro method for the titration of the toxin of Clostridium botulinum, J. Bacteriol. 92: 1580 – 1581.PubMedGoogle Scholar
  4. 4.
    Boroff, D.A., and Shu-Chen, G., 1973, Radio-immunoassay for type A toxin of Clostridium botulinum, Appl. Microbiol 25: 545 – 549.Google Scholar
  5. 5.
    Bowmer, E.J., 1963, Preparation and assay of the International Standards for Clostridium botulinum types A, B, C, D and E antitoxins, Bull. Wld. Hlth. Org. 29: 701 – 709.Google Scholar
  6. 6.
    Campbell, K.D., Collins, M.D., and East, A.K., 1993, Gene probes for identification of the botulinal neurotoxin gene and specific identification of neurotoxin types B, E, and F, J. Clin. Microbiol. 31: 2255 – 2262.PubMedGoogle Scholar
  7. 7.
    Cardella, M.A., Botulinum Toxoids, in: “Botulism: Proceedings of a Symposium,” Lewis, K.H., and Cassel, K., Jr., eds., U.S. Department of Health, Education, and Welfare, Public Health Service (PHS Pubi. No 999 FP-1), Cincinnati, Ohio (1964).Google Scholar
  8. 8.
    Dezfulian, M., Hatheway, C.L., Yolken, R.H., and Bartlett, J.G., 1984, Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type A and type B toxins in stool samples from infants with botulism, J. Clin. Microbiol. 20: 379 – 383.PubMedGoogle Scholar
  9. 9.
    Doellgast, G.J., Beard, G.A., Bottoms, J.D., Cheng, T., Roh, B.H., Roman, M.G., Hall, P.A., and Triscott, M.X., 1994, Enzyme-linked immunosorbent assay and enzyme-linked coagulation assay for detection of Clostridium botulinum neurotoxins A, B, and E and solution-phase complexes with dual-label antibodies, J. Clin. Microbiol. 32: 105 – 111.Google Scholar
  10. 10.
    Doellgast, G.J., Triscott, M.X., Beard, G.A., Bottoms, J.B., Cheng, T., Roh, B.H., Roman, M.G., Hall, P.A., and Brown, J.E., 1993, Sensitive enzyme-linked immunosorbent assay for detection of CLostridium botulinum neurotoxins A, B, and E using signal amplification via enzyme-linked coagulation assay, J. Clin. Microbiol. 31: 2402 – 2409.Google Scholar
  11. 11.
    Doellgast, G.J., Triscott, M.X., Beard, G.A., and Bottoms, J.D., 1994, Enzyme-linked immunosorbent assay — enzyme-linked coagulation assay for detection of antibodies to Clostridium botulinum neurotoxins A, B, and E and solution-phase complexes, J. Clin. Microbiol. 32: 851 – 853.Google Scholar
  12. 12.
    Evancho, G.M., Ashton, D.H., and Briskey, E.J., 1973, A standardized reversed passive hemagglutination technique for the determination of botulinum toxin, J. Food Sci. 38: 764 – 767.CrossRefGoogle Scholar
  13. 13.
    Fach, P., Gibert, M., Griffais, R., Guillou, J.P., and Popoff, M.R., 1995, PCR and gene probe identification of botulinum neurotoxin A- B- E- F- and G-producing Clostridium spp. and evaluation in food samples, Appl. Environ. Microbiol. 61: 389 – 392.Google Scholar
  14. 14.
    Ferreira, J.L., Baumstark, B.R., Hamdy, M.K., and McCay, S.G., 1993, Polymerase chain reaction for the detection of Clostridium botulinum type A in foods, J. Food Protect. 56: 18 – 20.Google Scholar
  15. 15.
    Ferreira, J.L., and Hamdy, M.K., 1995, Detection of botulinal toxin genes: types A and E or B and F using the multiplex polymerase chain reaction, J Rapid Meth. Automat. Microbiol. 3: 177 – 183.Google Scholar
  16. 16.
    Ferreira, J.L., Hamdy, M.K., Herd, A.L., McCay, S.G., and Zapatka, F.A., 1987, Monoclonal antibody for the detection of Clostridium botulinum type A toxin, Mol. Cell. Probes 1: 337 – 345.CrossRefGoogle Scholar
  17. 17.
    Ferreira, J.L., Hamdy, M.K., McCay, S.G., and Baumstark, B.R., 1992, An improved assay for identification of type A Clostridium botulinum using the polymerase chain reaction, J Rapid Meth. Automat. Microbiol. 1: 29 – 39.CrossRefGoogle Scholar
  18. 18.
    Ferreira, J.L., Hamdy, M.K., McCay, S.G., Hemphill, M., Kirma, N., and Baumstark, B.R., 1994, Detection of Clostridium botulinum type F using the polymerase chain reaction, Mol. Cell. Probes 8: 365 – 373.CrossRefGoogle Scholar
  19. 19.
    Ferreira, J.L., Hamdy, M.K., McCay, S.G., and Zapatka, F.A., 1990, Monoclonal antibody to type F Clostridium botulinum toxin, Appl. Environ. Microbiol. 56: 808 – 811.Google Scholar
  20. 20.
    Ferreira, J.L., Hamdy, M.K., Zapatka, F.A., and Hebert, W.O., 1981, Immunodiffusion method for detection of Clostridium botulinum type A, Appl. Environ. Microbiol. 42: 1057 – 1061.Google Scholar
  21. 21.
    Ferreira, J.L., Hamdy, M.K., Zapatka, F.A., and Hebert, W.O., 1983, Immunodiffusion method for detection of Clostridium botulinum types A, B, E and F, J. Food Safe. 5: 87 – 94.CrossRefGoogle Scholar
  22. Ferreira, J.L., Hatheway, C.L., Johnson, E.A., and Collins, M.D., Unpublished collaborative studies on neurotoxin genes of Clostridium botulinum.Google Scholar
  23. 23.
    Franciosa, G., Ferreira, J.L., and Hatheway, C.L., 1994, Detection of type A, B, and E botulism neurotoxin genes in Clostridium botulinum and other Clostridium species by PCR: evidence of unexpressed type B toxin genes in type A toxigenic organisms, J. Clin. Microbiol. 32: 1911 – 1917.Google Scholar
  24. 24.
    Gibson, A.M., Modi, N.K., Roberts, T.A., Hambleton, P., and Meiling, J., 1988, Evaluation of a monoclonal antibody-based immunoassay for detecting type B Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system, J. Appl. Bacteriol. 64: 285 – 291.PubMedGoogle Scholar
  25. 25.
    Gibson, A.M., Modi, N.K., Roberts, T.A., and Shone, C.C., 1987, Evaluation of a monoclonal antibody-based immunoassay for detecting type A Clostridium botulinum toxin produced in pure culture and an inoculated model cured meat system, J. Appl. Bacteriol. 63: 217 – 226.PubMedGoogle Scholar
  26. 26.
    Glasby, C, and Hatheway, C.L., 1983, Fluorescent-antibody reagents for the identification of Clostridium botulinum, J. Clin. Microbiol. 18: 1378 – 1383.PubMedGoogle Scholar
  27. 27.
    Glasby, C, and Hatheway, C.L., 1984, Evaluation of fluorescent-antibody tests as a means of confirming infant botulism, J. Clin. Microbiol. 20: 1209 – 1212.PubMedGoogle Scholar
  28. 28.
    Goodnough, M.C., Hammer, B., Sugiyama, H., and Johnson, E.A., 1993, Colony immunoblot assay of botulinal toxin, Appl. Environ. Microbiol. 59: 2339 – 2342.Google Scholar
  29. 29.
    Habermann, E., and Bernath, S., 1975, Preparation, measurement and possible use of human antitoxin against Cl. botulinum A, B, and E toxins, Med. Microbiol. Immunol. 161: 203 – 210.CrossRefGoogle Scholar
  30. 30.
    Hall, J.D., McCroskey, L.M., Pincomb, B.J., and Hatheway, C.L., 1985, Isolation of an organism resembling Clostridium barati which produces type F botulinal toxin from an infant with botulism, J. Clin. Microbiol. 21: 654 – 655.PubMedGoogle Scholar
  31. 31.
    Hatheway, C.L., Botulism, in: “Laboratory Diagnosis of Infectious Diseases: Principles and Practice,” Balows, A., Hausler, W.H., Jr., Ohashi, M., and Turano, A., eds., Springer-Verlag, New York (1988).Google Scholar
  32. 32.
    Hatheway, C.L., 1990, Toxigenic clostridia, Clin. Microbiol. Rev. 3: 67 – 98.Google Scholar
  33. 33.
    Hatheway, C.L., and Dang, C, Immunogenicity of the neurotoxins of Clostridium botulinum, in: “Therapy with botulinum toxin,” Jankovic, J., and Hallett, M., eds., Marcel Dekker, Inc., New York (1994).Google Scholar
  34. 34.
    Hatheway, C.L., Ferreira, M.C., and McCroskey, L.M., Evaluation of various factors in the mouse toxicity test for identification of botulinal toxin. Abstr., Ann. Mtg., Am. Soc. Microbiol., Las Vegas, 1985.Google Scholar
  35. 35.
    Horiguchi, Y, Kozaki, S., and Sakaguchi, G., 1984, Determination of Clostridium botulinum toxin by reversed passive latex agglutination, Jpn. J. Vet. Sci. 46: 487 – 491.CrossRefGoogle Scholar
  36. 36.
    Huhtanen, C.N., Whiting, R.C., Miller, A.J., and Call, J.E., 1992, Qualitative correlation of the mouse neurotoxin and enzyme-linked immunoassay for determining Clostridium botulinum types A and B toxins, J. Food Protect. 12: 119 – 127.Google Scholar
  37. 37.
    Inukai, Y, and Riemann, H., 1968, Detection of intracellular botulinum E toxin by fluorescent antibody technique, Jap. J. Vet. Res. 16: 39 – 43.Google Scholar
  38. 38.
    Johnson, H.M., Brenner, K., Angelotti, R., and Hall, H.E., 1966, Serological studies of types A, B, and E botulinal toxins by passive hemagglutination and bentonite flocculation, J. Bacteriol. 91: 967 – 973.PubMedGoogle Scholar
  39. 39.
    Kautter, D.A., Lynt, R.K., and Solomon, H.M., Clostridium botulinum, in: “Bacteriological Analytical Manual,” U.S. Food and Drug Administration, Washington, D.C. (1984).Google Scholar
  40. 40.
    Kautter, D.A., and Solomon, H.M., 1977, Collaborative study of a method for the detection of Clostridium botulinum and its toxins in foods, J. Assoc. Off. Anal. Chem. 60: 541 – 545.PubMedGoogle Scholar
  41. 41.
    Kempner, W., 1897, Weiterer Beitrag zur Lehre von der Fleischvergiftung. Das Antitoxin des Botulismus, Ztschr. Hyg. Infektionskh. 26: 481 – 500.CrossRefGoogle Scholar
  42. 42.
    Kozaki, S., Dufrenne, J., Hagenaars, A.M., and Notermans, S., 1979, Enzyme-linked immunosorbent assay (ELISA) for detection of Clostridium botulinum type B toxin, Jpn. J. Med. Sci. Biol. 32: 199 – 205.PubMedGoogle Scholar
  43. 43.
    Leuchs, J., 1910, Beitraege zur Kenntnis des Toxins und Antitoxins des Bacillus botulinus, Ztschr. Hyg. Infektskh. 65: 55 – 84.Google Scholar
  44. 44.
    Lewis, G.E.J., Kulinski, S.S., Reichard, D.W., and Metzger, J.F., 1981, detection of Clostridium botulinum type G toxin by enzyme-linked immunosorbent assay, Appl. Environ. Microbiol. 42:1018–1022.Google Scholar
  45. 45.
    Lüthgen, W., 1972, Eine modifikation des Mäusetestes zum Nachweis der Botulismus C Intoxikation des Geflügels, Berl. Münch. Tierarzt. Wochenschr. 85: 107 – 110.Google Scholar
  46. 46.
    Mestrandrea, L.W., 1974, Rapid detection of Clostridium botulinum toxin by capillary tube diffusion, Appl. Microbiol. 27: 1017 – 1023.Google Scholar
  47. 47.
    Michalik, M., Grzybowski, J., Ligieza, J., and Reiss, J., 1986, Enzyme-linked immunosorbent assay (ELISA) for the detection and differentiation of Clostridium botulinum toxins type A and B, J. Immunol. Meth. 93: 225 – 230.CrossRefGoogle Scholar
  48. 48.
    Notermans, S., Dufrenne, J., and Kozaki, S., 1979, Enzyme-linked immunosorbent assay for detection of Clostridium botulinum type E toxin, Appl. Environ. Microbiol. 37: 1173 – 1175.Google Scholar
  49. 49.
    Notermans, S., Dufrenne. J., and Kozaki, S., 1982, The relation between toxicity and toxin-related-antigen contents of Clostridium botulinum types C and D cultures as determined by mouse bioassay and ELISA, Jpn. J. Med. Sci. Biol. 35: 203 – 211.PubMedGoogle Scholar
  50. 50.
    Notermans, S., DuFrenne, J., and Van Schothorst. M., 1978, Enzyme-linked immunosorbent assay for detection of Clostridium botulinum toxin type A, Jpn. J. Med. Sci. Biol. 31: 81 – 85.PubMedGoogle Scholar
  51. 51.
    Notermans, S.. Hagenaars, A.M.. and Kozaki, S., 1982, The enzyme-linked immunosorbent assay (ELISA) for the detection and determination of Clostridium botulinum toxins A, B, and E, Methods Enzymol. 84: 223 – 238.PubMedCrossRefGoogle Scholar
  52. 52.
    Notermans, S., and Nagel, J., Assays for botulinum and tetanus toxins, in: “Botulinum Neurotoxin and Tetanus Toxin,” Simpson, L.L., ed., Academic Press, Inc., San Diego (1989).Google Scholar
  53. 53.
    Ogert, R.A., Brown. J.E., Singh, B.R., Shriver-Lake, L.C., and Ligler, F.S., 1992, Detection of Clostridium botulinum toxin A using a fiber optic-based biosensor, Anal. Biochem. 205: 306 – 312.PubMedCrossRefGoogle Scholar
  54. 54.
    Pearce, L.B., Borodic, G.E., First, E.R., and MacCallum, R.D., 1994, Measurement of botulinum toxin activity: evaluation of the lethality assay, Toxicol. Appl. Pharmacol. 128: 69 – 77.Google Scholar
  55. 55.
    Potter, M.D., Meng, J., and Kimsey, P., 1993, An ELISA for detection of botulinal toxin types A. B, and E in inoculated food samples, J. Food Protect. 56: 856 – 861.Google Scholar
  56. 56.
    Prevot, A.R., 1953, Rapport d’introduction du President du Sous-Comite Clostridium pour l’unification de la nomenclature des types toxigeniques de C botulinum, Int. Bull. Bacteriol. Nomenclature 3: 120 – 123.CrossRefGoogle Scholar
  57. 57.
    Ramon, G., 1924, Sur la toxine et sur l’anatoxine diphtheriques; pourvoir floculant et propriétés immunisantes, Ann. Inst. Pasteur 38: 1 – 10.Google Scholar
  58. 58.
    Ransom, G.M., Lee, W.H., Elliot, E.L., and Lattuada, C.P., Enzyme-linked immunosorbent assays (ELISAs) to detect botulinum toxins using high titer rabbit antisera, in: “Botulinum and Tetanus Neurotoxins,” DasGupta, B.R., ed., Plenum Press, New York (1993).Google Scholar
  59. 59.
    Rubin, L.G., Dezfulian, M., and Yolkin, R.H., 1982, Serum antibody response to Clostridium botulinum toxin in infant botulism, J. Clin. Microbiol. 16: 770 – 771.PubMedGoogle Scholar
  60. 60.
    Sakaguchi, G., 1983, Clostridium botulinum toxins, Pharmacol. Ther. 19: 165 – 194.Google Scholar
  61. 61.
    Sakaguchi, G., and Sakaguchi, S., 1968, Rapid bioassay for Clostridium botulinum type E toxins by intravenous injection into mice, Jpn. J. Med. Sci. Biol. 21: 369 – 378.PubMedGoogle Scholar
  62. 62.
    Sakaguchi, G., Sakaguchi, S., Kozaki, S.. Sugii, S.. and Ohishi. I., 1974, Cross reaction in reversed passive hemagglutination between Clostridium botulinum type A and B toxins and its avoidance by the use of antitoxic component immunoglobulin isolated by affinity chromatography, Jpn. J. Med. Sci. Biol. 27: 161 – 172.PubMedGoogle Scholar
  63. 63.
    Schantz, E.J., and Kautter, D.A., 1978, Standardized assay for Clostridium botulinum toxins, J. Assoc. Off. Anal. Chem. 61: 96 – 99.Google Scholar
  64. 64.
    Shone, C, Wilton-Smith, P., Appleton, N., Hambleton, P., Modi, N., Gatley, S., and Meiling, J., 1985, Monoclonal antibody-based immunoassay for type A Clostridium botulinum toxin is comparable to the mouse bioassay, Appl. Environ. Microbiol. 50: 63 – 67.Google Scholar
  65. 65.
    Siegel, L.S., 1988, Human response to botulinum pentavalent (ABCDE) toxoid determined by a neutralization test and by an enzyme-linked immunosorbent assay, J. Clin. Microbiol. 26: 2351 – 2356.PubMedGoogle Scholar
  66. 66.
    Smith, C, and Hamdy, M.K.. 1992, Immunoenzyme for rapid screening of Clostridium botulinum type A cells, J Rapid Meth. Automat. Microbiol. 1: 149 – 163.CrossRefGoogle Scholar
  67. 67.
    Suen, J.C, Hatheway, C.L., Steigerwalt, A.G., and Brenner, D.J., 1988, Clostridium argentinense, sp. nov: a genetically homogenous group composed of all strains of Clostridium botulinum toxin type G and some nontoxigenic strains previously identified as Clostridium subterminale or Clostridium hastiforme. Int. J. Syst. Bacteriol. 38: 375 – 381.CrossRefGoogle Scholar
  68. 68.
    Sugiyama, H., Brenner, S.L., and DasGupta, B.R., 1975, Detection of Clostridium botulinum toxin by local paralysis elicited with intramuscular challenge, Appl. Microbiol. 30: 420 – 423.Google Scholar
  69. 69.
    Szabo, E.A., Pemberton, J.M., and Desmarchelier, P.M., 1992, Specific detection of Clostridium botulinum type B by using the polymerase chain reaction, Appl. Environ. Microbiol. 58: 418 – 420.Google Scholar
  70. 70.
    Szabo, E.A., Pemberton, J.M., and DesMarchelier, P.M., 1993, Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction, Appl. Environ. Microbiol. 59: 3011 – 3020.Google Scholar
  71. 71.
    Szabo, E.A., Pemberton, J.M., Gibson, A.M., Eyles, M.J., and Desmarchelier, P.M.. 1994, Polymerase chain reaction for detection of Clostridium botulinum types A, B, and E in food, soil and infant feces, J. Appl. Bacteriol. 76: 539 – 545.Google Scholar
  72. 72.
    Szabo, E.A., Pemberton, J.M., Gibson, A.M., Thomas, R.J., Pascoe, R.R., and Desmarchelier, P.M., 1994, Application of PCR to a clinical and environmental investigation of a case of equine botulism, J. Clin. Microbiol. 32: 1986 – 1991.PubMedGoogle Scholar
  73. 73.
    Van Ermengem, E., 1897, Ueber einen neuen anaeroben Bacillus and seine Beziehungen zum Botulismus, Ztschr. Hyg. Infektionskh. 26: 1 – 56.CrossRefGoogle Scholar
  74. 74.
    Vermilyea, B., Walker, H.W, and Ayers, J.C, 1968, Detection of botulinal toxins by immunodiffusion, Appl. Microbiol. 16: 21 – 24.Google Scholar
  75. 75.
    Wernars, K., and Notermans, S., Gene probes for detection of food-borne pathogens, in: “Gene probes for bacteria”, Macario, A.J.L., and de Macario, E.C., eds., Academic Press, Inc., San Diego (1990).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Charles L. Hatheway
    • 1
  • Joseph L. Ferreira
    • 2
  1. 1.Division of Bacterial and Mycotic DiseasesCenters for Disease Control and Prevention, National Center for Infectious DiseasesGeorgiaUSA
  2. 2.US Food and Drug AdministrationSoutheastern Regional LaboratoriesGeorgiaUSA

Personalised recommendations