Binding Proteins on Synaptic Membranes for Certain Phospholipases A2 With Presynaptic Toxicity

  • Mu-Chin Tzeng
  • Chon-Ho Yen
  • Ming-Daw Tsai
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 391)

Abstract

Many steps in the process of neurotransmitter release are vulnerable to various neurotoxins. Some of these presynaptic toxins exhibit phospholipase A2 (PLA2) activity. These neurotoxic PLA2s (or PLA2 neurotoxins) are members of a group of extracellular (or secreted) PLA2 proteins found in most if not all animals. Besides phospholipid metabolism, these PLA2s exhibit a variety of biological effects, including host defense, neurotoxicity (presynaptic and/or postsynaptic), myotoxicity, and alteration of coagulation, which may or may not be related to hydrolysis of phospholipids. Despite large differences in biological actions, the PLA2 chains of these proteins show high degrees of homology in the primary, secondary and possibly tertiary structures. A small number of these proteins, mostly isolated from the venoms of a number of snakes, act primarily at the presynaptic level to cause synaptic blockade by inhibiting the release of neurotransmitters, though most of them also produce postsynaptic toxicity and other effects. These presynaptic PLA2 toxins may be classified into three classes. The toxins differ in their subunit structures, but in every case, at least one subunit is an active PLA2 with M.W. of 12,000 to 16,000. Each toxin in the first class is a single-chained protein. In the second class, a toxin may comprise 2 to 4 homologous subunits associated noncovalently.

Keywords

Toxicity Dopamine Serotonin Adduct Polypeptide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tzeng, M.-C. (1993) J. Toxicol.-Toxin Reviews 12, 1 – 62.Google Scholar
  2. 2.
    Harris, J. B. (1991) in Snake Toxins(A. L. Harvey, Ed.), pp. 91-129, Pergamon Press, New York.Google Scholar
  3. 3.
    Hawgood, B., and Bon, C. (1991) in Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins(A. T. Tu, Ed.), pp. 3-52, Marcel Dekker, New York.Google Scholar
  4. 4.
    Davidson, F. F., and Dennis, E. A. (1991) in Handbook of Natural Toxins, Vol. 5, Reptile Venoms and Toxins(A. T. Tu, Ed.), pp. 107. Marcel Dekker, New York.Google Scholar
  5. 5.
    Harvey, A. L. 1990 Int. Rev. Neurobiol. 32, 201 – 239.PubMedCrossRefGoogle Scholar
  6. 6.
    Rosenberg, P. 1990 in Handbook of Toxinology(W. T. Shier and D. Mebs, Eds.), pp. 67-277, Marcel Dekker, New York.Google Scholar
  7. 7.
    Dennis, E. A. (1994) J. Biol. Chem. 269, 13057 – 13060.PubMedGoogle Scholar
  8. 8.
    Mayer, R. J., and Marshall, L. A. 1993 FASEB J. 7, 339 – 348.PubMedGoogle Scholar
  9. 9.
    Kudo, I., Murakami, M., Hara, S. and Inoue. K. (1993) Biochim. Biophys. Acta 1170, 217 – 231.Google Scholar
  10. Hseu, M. J., Yang, J. H., Guillory, R. J., and Tzeng, M.-C. 1985 13th Intl. Congr. Biochem. p.143, Amsterdam.Google Scholar
  11. 11.
    Tzeng, M.-C, Hseu, M. J., Yang, J. H., and Guillory, R. J. (1986) J. Protein Chem. 5, 221 – 228.CrossRefGoogle Scholar
  12. 12.
    Chuang, J. C. (1992) Master Thesis, National Taiwan UniversityGoogle Scholar
  13. 13.
    Ko, Y Y (1994) Master Thesis, National Taiwan UniversityGoogle Scholar
  14. 14.
    Othman, I. B., Spokes, J. W., and Dolly, J. O. 1982 Eur. J. Biochem. 128, 267 – 276.PubMedCrossRefGoogle Scholar
  15. 15.
    Rehm, H., and Betz, H. (1982) J. Biol. Chem. 257, 10015 – 10022.PubMedGoogle Scholar
  16. 16.
    Rapuano, B.E., Yang, C.C, and Rosenberg, P. 1986 Biochim. Biophys. Acta 856, 457 – 470.Google Scholar
  17. 17.
    Shabo-Shina, R., and Bdolah, A. 1987 Toxicon 25, 253 – 266.PubMedCrossRefGoogle Scholar
  18. 18.
    Breeze, A. L., and Dolly, J. O. 1989 Eur. J. Biochem. 178, 771 – 778.PubMedCrossRefGoogle Scholar
  19. Lambeau, G., Barhanin, J., Schweitz, H., Qar, J., and Lazdunski, M. (1989) J. Biol. Chem. 264, 11503–11510.Google Scholar
  20. Degn, L. L., Seebart, C. S. and Kaiser, I.I. (1991) Toxicon 29, 979–988.Google Scholar
  21. Krizaj, I., and Gubensek, F. (1994) Biochemistry 33, 13938–13945.Google Scholar
  22. Delot, E., and Bon, C. (1993) Biochemistry 32, 10708–10713.Google Scholar
  23. Whittaker, V.P. (1959) Biochem. J. 72, 694–706.Google Scholar
  24. De Robertis, E., Rodriguez de Lores Arnaiz, G., Salganicoff, L., Pellegrino de Iraldi, A., and Zieher, L. M. (1963) J. Neurochem. 10, 225–235.Google Scholar
  25. Bieber, A.L., Mills, J.P., Jr., Ziolkowski, C., and Harris, J. (1990) Toxin Rev. 9, 285.Google Scholar
  26. Bon, C., Bouchier, C. et al. (1989) Acta Physiol. pharmacol. Latino-Amer. 39, 439.Google Scholar
  27. Bon, C., Changeux, J.P., Jeng, T.W., and Fraenkel-Conrat, H. (1979) Eur. J. Biochem. 99, 471–481.Google Scholar
  28. Hendon, R.A., and Tu, A.T. (1979) Biochim. Biophys. Acta 578, 243–252.Google Scholar
  29. Fohlman, J., Eaker, D., Karlsson, E., and Thesleff, S. (1976) Eur. J. Biochem. 68, 457–469.Google Scholar
  30. 30.
    Habermann, E., and Breithanpt, H. (1978) Toxicon 16, 19–30.PubMedCrossRefGoogle Scholar
  31. Fohlman, J., Lind, P., and Eaker, D. (1977) FEBS Lett. 84, 367–371.Google Scholar
  32. Hseu, M.J., Guillory, R.J., and Tzeng, M.-C. (1990) J. Bioenerg. Biomembr. 22, 39–50.Google Scholar
  33. Yen, C.-H., and tzeng, M.-C. (1991) Biochemistry 30, 11473–11477.Google Scholar
  34. Radvanyi, F., Saliou, B., Lembezat, M.P., and Bon, C. (1989) J. Neurochem. 53, 1252–1260.Google Scholar
  35. Tzeng, M.-C., Hseu, M.J., and Yen, C.-H. (1989) Biochem. Biophys. Res. Commun. 165, 689–694.Google Scholar
  36. Mebs, D., and Klaus, I. (1991) in Snake Toxins (A.L. Harvey, Ed.), pp. 425–447, Pergamon Press, New York.Google Scholar
  37. Heinrikson, R.L. (1991) in Methods in Enzymology, vol.197 (E.A. Dennis, Ed.), pp. 201–214, Academic Press, New York.Google Scholar
  38. 38.
    Dupureur, C. M., Yu, B.Z., Mamone, J.A., Jain, M.K., and Tsai, M.-D. (1992) biochemistry31 10576–10583.PubMedCrossRefGoogle Scholar
  39. Sayers, J.R., Krekel, C., and Eckstein, F. (1992) BioTechniques 13, 592–596.Google Scholar
  40. Tzeng, M.-C., Yen, C.-H., Hseu, M.-J., Dupureur, C.M., and Tsai, M.D. (1995) J. Biol. Chem. 270, 2120–2123.Google Scholar
  41. Scloss, P., Puschell, A.W., and Betz, H. (1994) Curr. Opin. Cell Biol. 6, 595–599.Google Scholar
  42. Amara, S.G., and Kuhar, M.J. (1993) Annu. Rev. Neurosci. 16, 73–93.Google Scholar
  43. Amara, S.G., and Arriza, L. (1993) Curr. Opin. Neurobiol. 3, 337–344.Google Scholar
  44. 44.
    Uhl, G.R. (1992) Trends Neurosci. 15, 265–268.PubMedCrossRefGoogle Scholar
  45. 45.
    Wright, E.M., Hager, K.M., and Turk, E. (1992) Curr. Opin. Cell Biol. 4, 696–702.PubMedCrossRefGoogle Scholar
  46. 46.
    Attwell, D., and Bouvier, M. (1992) Curr. Biol. 2, 5441–543.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • Mu-Chin Tzeng
    • 1
    • 2
  • Chon-Ho Yen
    • 1
  • Ming-Daw Tsai
    • 3
  1. 1.Academia SinicaInstitute of Biological ChemistryTaiwan
  2. 2.Institute of Biochemical SciencesNational Taiwan UniversityTaipeiTaiwan, Republic of China
  3. 3.Department of ChemistryThe Ohio State UniversityColumbusUSA

Personalised recommendations