Advertisement

How is the Dioxygen-Iron Bond Manipulated by Transport and Catalytic Haem Proteins?

  • M. Akhtar

Abstract

The Chemistry which underpins corrosion has been borrowed by evolutionary biology and used to perform a myriad of cunning feats. The lecture will exemplify this by showing that the first stage of the reaction involving corrosion forms the basis of the mechanism of transport of oxygen by haemoglobin. In turn, the chemistry underpinning the latter process represents a fundamental reaction from which more complex biological oxidative reactions have evolved. These reactions are catalysed by drug-metabolising hydroxylases of the cytochrome P-450 family but more importantly, from the viewpoint of the lecture, by multifunctional cytochrome P-450s involved in the biosynthesis of sex hormones.

Keywords

Haem Iron Hydroxylation Reaction Androgen Biosynthesis High Spin Iron Negative Gibbs Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mellor, J.W. (1942) In: A Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. XIII (part 2), pp. 432, Longman, Green & Co., London.Google Scholar
  2. 2.
    Perutz, M.F. (1989) In: Mechanisms of Cooperativity andAllosteric Regulations in Proteins, University Press, CambridgeGoogle Scholar
  3. M.A. Gilles-Gonzalez, G. Gonzalez and M.F. Perutz, Biochemistry,1995, 34: 232 and references to Perutz’s previous work cited therein.PubMedCrossRefGoogle Scholar
  4. 3.
    Pauling, L. and Coryell, C.D. (1936) Proc. Natl. Acad. Sci. USA, 22: 210.PubMedCrossRefGoogle Scholar
  5. 4.
    Weiss, J.J. (1964) Nature,203: 183 and references cited thereinCrossRefGoogle Scholar
  6. J. Peisach, W.E. Blumberg, W.A. Wittenberg and J.B. Wittenberg, (1968) J. Biol. Chem., 243: 1871.PubMedGoogle Scholar
  7. 5.
    Akhtar, M. and Wright, J.N. (1991) Nat. prod. Rep. 527.Google Scholar
  8. 6.
    Korth, H.G., Sustmann, R., Thater, C., Butler, A.R. and Ingold, K.U. (1994) J. Biol. Chem., 269: 17776.PubMedGoogle Scholar
  9. 7.
    Ortiz de Montellano, P.R. (ed.), (1986) Cytochrome P-450: Structure, Mechanism & Biochemistry, Plenum Press, New York & London.Google Scholar
  10. 8.
    McMurray, T.J. and Groves, J.T. (1986) In: Cytochrome P-450: Structure Mechanism & Biochemistry, (Ortiz de Montellano, P.R. ed.), pp. 1. Plenum Press, New York & London.Google Scholar
  11. 9.
    Coon, M.J., Ding, X., Pernecky, S.J. and Vaz, A.D.N. (1992) FASEB J. 6: 669.PubMedGoogle Scholar
  12. 10.
    Akhtar, M., Alexander, K., Boar, R.B., McGhie, J.F. and Barton, D.H.R. (1978) Biochem. J. 169: 449.PubMedGoogle Scholar
  13. 11.
    Akhtar, M., Calder, M.R., Corina, D.L. and Wright, J.N. (1982) Biochem. J. 201: 569.PubMedGoogle Scholar
  14. 12.
    Stevenson, D.E., Wright, J.N. and Akhtar, M. (1988) J. Chem. Soc., Perkin Trans. I. 2043.Google Scholar
  15. 13.
    Nakajin, S., Takahashi, M., Shinoda, M. and Hall, P.F. (1985) Biochem. Biophys. Res. Commun. 132: 708.PubMedCrossRefGoogle Scholar
  16. 14.
    Akhtar, M., Corina, D.L., Miller, S.L., Shyadehi, A.Z. and Wright, J.N. (1994) Biochemistry 33: 4410.PubMedCrossRefGoogle Scholar
  17. 15.
    Imai, T., Globerman, H., Gertner, J.M., Kagawa, N. and Waterman, M.R. (1993) J. Biol. Chem. 268: 19681.PubMedGoogle Scholar
  18. 16.
    Lee-Robichaud, P., Wright, J.N., Akhtar, M.E. and Akhtar, M. (1995)Biochem. J, (in Press).Google Scholar

Copyright information

© Plenum Press, New York 1996

Authors and Affiliations

  • M. Akhtar
    • 1
  1. 1.Department of BiochemistryUniversity of SouthamptonSouthamptonUK

Personalised recommendations