Skip to main content

Time of Flight ERDA

  • Chapter
Book cover Forward Recoil Spectrometry
  • 113 Accesses

Abstract

Determining mass separation between scattered and recoiled particles by measuring the TOF parameter of neutral or ionic species was first used at low energies; for example at the end of the seventies, Chen and coworkers studied gold targets using 8-keV Ar+.(1) The MeV ERDA techniques were used for many years, but these were principally applied in materials research to determine depth profiles of a specific target matrix element, such as hydrogen or one of its isotopes. With the increasing development of multilayer thin-film microelectronic devices, metalized polymers and advanced ceramic materials, there is a need to depth profile a range of other light elements simultaneously, such as B, C, N, O, Al, Si, P, and some three-dimensional transition metals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen, Y. S., Miller, G. L., Robinson, D. A. H., Wheatley, G. H., and Buck, T. M., Energy and mass spectra of neutral and charged particles scattered and desorbed from gold surfaces, Surf. Sci. 62, 133 (1977).

    Article  CAS  Google Scholar 

  2. Groleau, R., Gujrathi, S. C., and Martin, J. R, Time-of-flight system for profiling recoiled light elements, Nucl. Instrum. Methods Phys. Res. 218, 11 (1983).

    Article  CAS  Google Scholar 

  3. Thomas, J. R, Fallavier, M., Ramdane, D., Chevarier, N., and Chevarier, A., High-resolution depth profiling of light elements in high atomic mass materials, Nucl. Instrum. Methods Phys. Res. 218, 125 (1983).

    Article  CAS  Google Scholar 

  4. Whitlow, H. J., Possnert, G., and Petersson, C. S., Quantitative mass and energy-dispersive elastic recoil spectrometry: Resolution and efficiency considerations, Nucl. Instrum. Methods Phys. Res. Sect. B 27, 448 (1987).

    Article  Google Scholar 

  5. Rabalais, J. W., Schultz, J. A., and Kumar, R., Surface analysis using scattered primary and recoiled secondary neutrals and ions by TOF and ESA techniques, Nucl. Instrum. Methods Phys. Res. 218, 719 (1983).

    Article  CAS  Google Scholar 

  6. Nölscher, C., Brenner, K., Knauf, R., and Schmidt, W., Elastic recoil detection analysis of light particles (1H - 160) using 30-MeV sulphur ions, Nucl. Instrum. Methods Phys. Res. 218, 116 (1983).

    Article  Google Scholar 

  7. Gujrathi, S. C., in Metallization of Polymers (Sacher, E., Pireaux, J.-P., and Kowalczyk, S. P., eds.) (ACS Symposium Series 440. American Chemical Society, Washington, D.C. 1990 ), pp. 88–109.

    Google Scholar 

  8. Whitlow, H. J., Petersson, C. S., Reeson, K. J., and Hemment, L. F., Mass-dispersive recoil spectrometry studies of oxygen and nitrogen redistribution in ion-beam-synthesized buried oxynitride layers in silicon, Appl. Phys. Lett. 52, 1871 (1988).

    Article  CAS  Google Scholar 

  9. Whitlow, H. J., Time of flight spectroscopy methods for analysis of materials with heavy ions: a tutorial, in Proc. of High-Energy and Heavy Ion-Beams in Materials Analysis ( J. R. Tesmer, ed.) ( Materials Research Society, Albuquerque, 1990 ), pp. 243–256.

    Google Scholar 

  10. Busch, F., Pfeffer, W., Kohlmeyer, B., Schtill, D., and Ptilhoffer, F., A position-sensitive transmission time detector, Nucl. Instr. Meth. 171, 71 (1980).

    Article  CAS  Google Scholar 

  11. Smith, A. D., and Allington-Smith, J. R., A study of microchannel plate intensifiers, IEEE Trans. Nucl. Sci. 33, 295 (1986).

    Article  Google Scholar 

  12. Hammamatsu Technical Manual RES-0795, Characteristics and applications of microchannel plates (1989).

    Google Scholar 

  13. Pferdekämper, K. E., and Clerc, H. G., Energy distribution of electrons ejected from a thin carbon foil by alpha particles and fission products, Z. Phys. A275, 223 (1975).

    Google Scholar 

  14. Sternglass, E. J., Theory of secondary electron emission by high-speed ions, Phys. Rev. 108, 1 (1957).

    Article  CAS  Google Scholar 

  15. Clerc, H. G., Gehrhardt, H. J., Richter, L., and Schmidt, K. H., Heavy-ion-induced secondary electron emission. A possible method for Z-identification, Nucl. Instrum. Methods Phys. Res. 113, 325 (1973).

    Article  CAS  Google Scholar 

  16. Clouvas, A., and Katsanos, A., Heavy-ion-induced electron emission from thin carbon foils, Phys. Rev. B: Condens. Matter 43, 2496 (1991).

    Article  CAS  Google Scholar 

  17. Girard, J., and Bolore, M., Heavy-ion timing with channel plates, Nucl. Instrum. Methods Phys. Res. 140, 279 (1977).

    Article  CAS  Google Scholar 

  18. Kavalov, R. L., Margaryan, Yu. L.. Panyan, M. G., and Papyan, G. A., A zero-time detector of charged particles based on secondary electron emission from low-density dielectrics, Nucl. Instrum. Methods Phys. Res. Sect. A 237, 543 (1985).

    Article  Google Scholar 

  19. Starzecki, W., Stefanini, A. M., Lunardi, S., and Signorini, C., A compact time-zero detector for mass identification of heavy ions, Nucl. Instrum. Methods Phys. Res. Sect. B 193, 499 (1982).

    Article  CAS  Google Scholar 

  20. Ghetti, R., Jakobsson, B., and Whitlow, H. J., Measurements of the response function of silicon diode detectors for heavy ions using a time of flight technique, Nucl. Instrum. Methods Phys. Res. Sect. A 317, 235 (1992).

    Article  Google Scholar 

  21. Amsel, G., Cohen, C., and L’Hoir, A., Experimental measurements, mathematical analysis, and partial deconvolution of the asymmetrical response of surface-barrier detectors to MeV 4He, 12C, 14N, and 160 ions, in Ion Beam Surface Layer Analysis, Vol. 2 ( O. Meyer, G. Linker, and E Kappeler, eds.) (Plenum, New York, 1976 ), pp. 953–64.

    Google Scholar 

  22. O’Connor, D. J., and Tan, C., Application of heavy ions to high-depth resolution RBS, Nucl. Instrum. Methods Phys. Res. Sect. B 36, 178 (1989).

    Article  Google Scholar 

  23. Hult, M., El Bouanani, M., Persson, L., Whitlow, H. J., Andersson, M., Zaring, C., Östling, M., Cohen, D. D., Dytlewsli, N., Bubb, I. F., Johnston, P. N., and Walker, S. R., Empirical characterisation of mass distribution broadening in ToF-E recoil spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 101, 263 (1995).

    Article  CAS  Google Scholar 

  24. Goppelt, P., Gebauer, B., Fink, D., Wilpert, M., Wilpert, T.H., and Bohne, W., High-energy ERDA with very heavy ions using mass-and energy-dispersive spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 68, 235 (1992).

    Article  Google Scholar 

  25. Whitlow, H. J., Jakobsson, B., and Westerberg, D. L., Mass resolution of recoil fragment detector telescopes for 0.05–0.5 A MeV heavy recoiling fragments, Nucl. Instrum. Methods Phys. Res. Sect. A 310, 636 (1991).

    Article  Google Scholar 

  26. Stanescu, T. M., Meyer, J. D., Baumann, H., and Bethge, K., Time-of-flight spectrometry for materials analysis, Nucl. Instrum. Methods Phys. Res. Sect. B 50, 167 (1990).

    Article  Google Scholar 

  27. Martin, J. W., Cohen, D. D., Dytlewski, N., Garton, D. B., Whitlow, H. J., and Russell, G. J., Materials characterisation using heavy-ion elastic recoil time-of-flight spectrometry, Nucl. Instrum. Methods Phys. Res. Sect. B 94, 277 (1994).

    Article  CAS  Google Scholar 

  28. Shima, K., Kuno, N., Yamanouchi, M., and Tawara, H., Equilibrium charge fractions of ions of Z = 4–92 emerging from a carbon foil, Atom. Data Nucl. Data Tables 51, 173 (1992).

    Article  CAS  Google Scholar 

  29. Laegsgaard, E., Position-sensitive semiconductor detectors, Nucl. Instrum. Methods Phys. Res. 162, 93 (1979).

    Article  CAS  Google Scholar 

  30. Räisänen, J., Rauhala, E., Knox, J. M., and Harmon, J. E, Non-Rutherford cross sections in heavy-ion elastic recoil spectrometry: 40–70 MeV 32S ions on carbon, nitrogen, and oxygen, J. Appl. Phys. 75, 3273 (1994).

    Article  Google Scholar 

  31. Räisänen, J., and Rauhala, E., Angular distributions of 12C, 14N and 16O ion elastic scattering by sulfur near the Coulomb barrier and the high-energy limits of heavy-ion Rutherford scattering, J. Appl. Phys. 77, 1762 (1995).

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Dytlewski, N. (1996). Time of Flight ERDA. In: Forward Recoil Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0353-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0353-4_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8012-2

  • Online ISBN: 978-1-4613-0353-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics