Skip to main content

Instrumental Equipment

  • Chapter
  • 111 Accesses

Abstract

Chapter 10* does not present a detailed review of IBA instrumentation. The general equipment for IBA, in particular accelerators, analyzing magnets, focusing lenses, goniometers, detection devices, and related equipment are reviewed in detail in classic IBA handbooks(1,2) with abundant literature references and excellent recommendations for proper operation. Here we focus on equipment especially adapted to ERDA and topics that require more attention due to the particular requirements of ERDA. Our purpose is to give a sufficient extent of experimental details for any IBA user interested in performing elastic recoil measurements.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chu, W.-K., Mayer, J. W., and Nicolet, M.-A., Backscattering Spectrometry ( Academic, New York, 1978 ).

    Google Scholar 

  2. Bird, J. R., and Williams, J. S., Ion Beams for Materials Analysis ( Academic, New York, 1989 ).

    Google Scholar 

  3. Scharf, W., Particle Accelerators and Their Uses (Harwood, Chur, Switzerland, 1991 ).

    Google Scholar 

  4. Bromley, D. A., ed., Large Electrostatic Accelerators, special issue of Nucl. Instrum. Methods. Phys. Res. 122, 1 (1974).

    Google Scholar 

  5. Pelletron: Accelerators/Ion Beam Systems (product catalog) (National Electrostatics Corp., Middleton, Wisconsin, 1994 ).

    Google Scholar 

  6. Tirira, J., Contribution à l’étude de la collision hélion-4 proton et à la spectrométrie de recul élastique, thesis, CEA report CEA-R-5529, 1990.

    Google Scholar 

  7. Pâszti, E, Kotai, E., Mezey, G., Manuaba, A., Pocs, L., Hildebrandt, D., and Strusny, H., Hydrogen and deuterium measurements by elastic recoil detection using alpha particles, Nucl. Instrum. Methods. Phys. Res. Sect. B 15, 486 (1986).

    Article  Google Scholar 

  8. Arnoldbik, W. M., de Laat, C. T. A. M., and Habraken, E H. M. P., On the use of a dE-E telescope in elastic recoil detection, Nucl. Instrum. Methods. Phys. Res. Sect. B 64, 832 (1992).

    Google Scholar 

  9. Whitlow, H. J., Johansson, E., Ingemarsson, P. A., and Hogmark, S., Recoil spectrometry of oiladditive-associated compositional changes in sliding metal surfaces, Nucl. Instrum. Methods. Phys. Res. Sect. B 63, 445 (1992).

    Article  Google Scholar 

  10. Rijken, H. A., Klein, S. S., and de Voigt, M. J. A., Improved depth resolution in CERDA by recoil time of flight measurement, Nucl. Instrum. Methods. Phys. Res. Sect. B 64, 395 (1992).

    Article  Google Scholar 

  11. Alton, G. D., Ion sources for accelerators in materials research, Nucl. Instrum. Methods. Phys. Res. Sect. B 73, 221 (1993).

    Article  Google Scholar 

  12. Neelmeijer, C., Grötzschel, R., Hentschel, E., Klabes, R., Kolitsch, A., and Richter, R., Ion beam analysis of steel surfaces modified by nitrogen ion implantation, Nucl. Instrum. Methods. Phys. Res. Sect. B 66, 242 (1992).

    Article  Google Scholar 

  13. Carey, D. C., Optics of Charged Particle Beams (Harwood, Chur, Switzerland, 1987 ).

    Google Scholar 

  14. Kôtai, E., Computer methods for analysis and simulation of RBS and ERDA spectra, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 588 (1994).

    Article  Google Scholar 

  15. Section des accélérateurs, Centre d’Etudes Nucléaires de Grenoble, Sondes tournantes pour analyse des distributions spatiales de courant dans les faisceaux de particules, Le Vide 157, 34 (1972).

    Google Scholar 

  16. Tirira, J., Trocellier, P., Mosbah, M., and Metrich, N., Study of hydrogen content in solids by ERDA and radiation-induced damage, Nucl. Instrum. Methods. Phys. Res. Sect. B 56/57, 839 (1991).

    Google Scholar 

  17. Doyle, B. L., and Wing, N. D., The Sandia nuclear microprobe, Sandia report SAND 82–2393, 1982.

    Google Scholar 

  18. Nölscher, C., Brenner, K., Knauf, R., and Schmidt, W., Elastic recoil detection analysis of light particles (’H - 160) using 30-MeV sulfur ions, Nucl. Instrum. Methods. Phys. Res. 218, 116 (1983).

    Article  Google Scholar 

  19. Tait, W. H., Radiation Detection ( Butterworth, London, 1980 ).

    Google Scholar 

  20. Knoll, G. F., Radiation Detection and Measurement ( Wiley, New York, 1989 ).

    Google Scholar 

  21. Hösler, W., and Darji, R., On the nonlinearity of silicon detectors and the energy calibration in RBS, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 602 (1994).

    Article  Google Scholar 

  22. Langley, R. A., Study of the response of silicon barrier detectors to protons and a-particles, Nucl. Instrum. Methods. Phys. Res. 113, 109 (1973).

    Article  CAS  Google Scholar 

  23. Brice, D. K., and Doyle, B. L., A curved detection slit to improve ERD energy and depth resolution, Nucl. Instrum. Methods. Phys. Res. Sect. B 45, 265 (1990).

    Article  Google Scholar 

  24. Ross, G. G, Terreault, B., Gobeil, G., Abel, G., Boucher, C., and Veilleux, G., Inexpensive quantitative hydrogen depth profiling for surface probes, J. Nucl. Mater. 128/129, 730 (1984).

    Article  Google Scholar 

  25. Prozesky, V. M., Churms, C. L., Pilcher, J. V., Springhorn, K. A., and Behrisch, R., ERDA measurement of hydrogen isotopes with a DE-E telescope, Nucl. Instrum. Methods. Phys. Res. Sect. B 84, 373 (1994).

    Article  CAS  Google Scholar 

  26. Hult, M., Whitlow, H. J., Ostling, M., Lundberg, N., Zaring, C., Cohen, D. D., Dytlewski, N., Johnston, P. N., and Walker S. R., RBS and recoil spectrometry analysis of CoSi2 formation on GaAs, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 916 (1994).

    Article  CAS  Google Scholar 

  27. Kruse, O., and Carstanjen, H. D., High-depth resolution ERDA of H and D by means of an electrostatic spectrometer, Nucl. Instrum. Methods. Phys. Res. Sect. B 89, 191 (1994).

    Article  CAS  Google Scholar 

  28. Gossett, C. R., Use of a magnetic spectrometer to profile light elements by elastic detection, Nucl. Instrum. Methods. Phys. Res. Sect. B 15, 481 (1986).

    Article  Google Scholar 

  29. Dollinger, G., Elastic recoil detection analysis with atomic depth resolution, Nucl. Instrum. Methods. Phys. Res. Sect. B 79, 513 (1993).

    Article  Google Scholar 

  30. Boerma, D. O., Labohm, E, and Reinders, J. A., Design of a magnetic spectrograph for surface, interface, and thin-layer analysis, Nucl. Instrum. Methods. Phys. Res. Sect. B 50, 291 (1990).

    Article  Google Scholar 

  31. Assmann, W., Hartung, P, Huber, H., Staat, P., Steffens, H., and Steinhausen, Ch., Set-up for materials analysis with heavy ion beams at the Munich MP tandem, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 726 (1994).

    Article  CAS  Google Scholar 

  32. Goppelt, R, Gebauer, B., Fink, D., Wilpert, M., Wilpert, Th., and Bohne, W., High-energy ERDA with very heavy ions using mass and energy-dispersive spectrometry, Nucl. Instrum. Methods. Phys. Res. Sect. B 68, 235 (1992).

    Article  Google Scholar 

  33. Arai, E., Zounek, A., Sekino, M., Takemoto, K., and Nittono, O., Depth profiling of porous silicon surface by means of heavy-ion TOF-ERDA, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 226 (1994).

    Article  CAS  Google Scholar 

  34. Hofsäss, H. C., Parikh, N. R., Swanson, M. L., and Chu, W. K., Elastic recoil coincidence spectroscopy (ERCS), Nucl. Instrum. Methods. Phys. Res. Sect. B 58, 49 (1991).

    Article  Google Scholar 

  35. Klein, S. S., Mutsaers, P. H. A., and Fischer, B. E., Mass selection and depth profiling by coincident recoil detection for nuclei in the middle-mass region, Nucl. Instrum. Methods. Phys. Res. Sect. B 50, 150 (1990).

    Article  Google Scholar 

  36. Löffler, M., Scheerer, H. J., and Vonach, H., The ion optical properties of the Munich Q3D-spectrograph investigated by means of a special experimental ray-tracing method. Nucl. Instrum. Methods. Phys. Res. 111, 1 (1973).

    Article  Google Scholar 

  37. Klein, S. S., Rijken, H. A., Tolsma, H. P. T., and de Voigt, M. J. A., Elastic recoil selection by pulse shape analysis, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 660 (1994).

    Article  CAS  Google Scholar 

  38. Laegsgaard, I., Position-sensitive semiconductor detectors, Nucl. Instrum. Methods. Phys. Res. 162, 93 (1979).

    Article  CAS  Google Scholar 

  39. Chu, W-K., Mayer, J. W., and Nicolet, M.-A., Backscattering Spectrometry ( Academic, New York, 1978 ), p. 171.

    Google Scholar 

  40. Tirira, J., Trocellier, P., and Frontier, J. P., Analytical capabilities of ERDA in transmission geometry, Nucl. Instrum. Methods. Phys. Res. Sect. B 45, 147 (1990).

    Article  Google Scholar 

  41. Pdszti, F., Szilâgyi, E., and Kotai, E., Optimization of the depth resolution in elastic recoil detection, Nucl. Instrum. Methods. Phys. Res. Sect. B 54, 507 (1991).

    Article  Google Scholar 

  42. Wielunski, L., Benenson, R., Horn, K., and Lanford, W. A., High-sensitivity hydrogen analysis using elastic recoil, Nucl. Instrum. Methods. Phys. Res. Sect. B 15, 469 (1986).

    Article  Google Scholar 

  43. Rijken, H. A., Klein, S. S., van IJzendoorn, L. J., and de Voigt, M. J. A., Elastic recoil detection analysis with high-energy alpha beams, Nucl. Instrum. Methods. Phys. Res. Sect. B 79, 532 (1993).

    Google Scholar 

  44. Gebauer, B., Fink, D., Goppelt, P., Wilpert, M., and Wilpert, Th., Multidimensional ERDA measurements and depth profiling of medium-heavy elements, Nucl. Instrum. Methods. Phys. Res. Sect. B 50, 159 (1990).

    Article  Google Scholar 

  45. Goppelt, P., Biersack, J. P., Gebauer, B., Fink, D., Bohne, W., Wilpert, M., and Wilpert, Th., Investigation of thin films by high-energy ERDA, Nucl. Instrum. Methods. Phys. Res. Sect. B 80/81, 142 (1993).

    Article  Google Scholar 

  46. Whitlow, H. J., Possnert, G., and Petersson, C. S., Quantitative mass and energy-dispersive elastic recoil spectrometry: Resolution and efficiency considerations, Nucl. Instrum. Methods. Phys. Res. Sect. B 27, 448 (1987).

    Article  Google Scholar 

  47. Siegele, R., Davies, J. A., Forster, J. S., and Andrews, H. R., Forward elastic recoil measurements using heavy ions, Nucl. Instrum. Methods. Phys. Res. Sect. B 90, 606 (1994).

    Article  CAS  Google Scholar 

  48. Siegele, R., Haugen, H. K., Davies, J. A., Forster, J. S., and Andrews, H. R., Forward elastic recoil measurements using heavy ions, J. Appl. Phys. 76, 4524 (1994).

    Article  CAS  Google Scholar 

  49. Habraken, E. H. M. P., Light-element depth profiling using elastic recoil detection, Nucl. Instrum. Methods. Phys. Res. Sect. B 68, 181 (1992).

    Article  Google Scholar 

  50. Klein, S. S., Separate determination of concentration profiles for atoms with different masses by simultaneous measurement of scattered projectile and recoil energies, Nucl. Instrum. Methods. Phys. Res. Sect. B 15, 464 (1986).

    Article  Google Scholar 

  51. Martin, J. W., Cohen, D. D., Dytlewski, N., Garton, D. B., Whitlow, H. J., and Russell, G. J., Materials characterisation using heavy-ion elastic recoil time of flight spectrometry, Nucl. Instrum. Methods. Phys. Res. Sect. B 94, 277 (1994).

    Article  CAS  Google Scholar 

  52. Ross, G. G., and Terreault, B., High-precision depth profiling of light isotopes in low-atomic-mass solids, J. Appl. Phys. 51, 1259 (1980).

    Article  CAS  Google Scholar 

  53. Oura, K., Naitoh, M., Morioka, H., Watamori, M., and Shoji, F., Elastic recoil detection analysis of coadsorption of hydrogen and deuterium on clean Si surfaces, Nucl. Instrum. Methods. Phys. Res. Sect. B 85, 344 (1994).

    Article  CAS  Google Scholar 

  54. Arai, E., Funaki, H., Katayama, M., Oguri, Y., and Shimizu, K., TOF-ERD experiments using a 10-MeV 35Cl beam, Nuel. Instrum. Methods. Phys. Res. Sect. B 64, 296 (1992).

    Article  Google Scholar 

  55. Nagai, H., Hayashi, S., Aratani, M., Nozaki, T., Yanokura, M., Kohno, I., Kuboi, O., and Yatsurugi, Y., Reliability, detection limit, and depth resolution of the elastic recoil measurement of hydrogen, Nucl. Instrum. Methods. Phys. Res. Sect. B 28, 59 (1987).

    Article  Google Scholar 

  56. Amoldbik, W. M., and Habraken, E H. M. P., Elastic recoil detection, Rep. Prog. Phys. 56, 859 (1993).

    Article  Google Scholar 

  57. Thomas, J. P., Fallavier, M., Ramdane, D., Chevarier, N., and Chevarier, A., High-resolution depth profiling of light elements in high-atomic-mass materials, Nucl. Instrum. Methods. Phys. Res. 218, 125 (1983).

    Article  CAS  Google Scholar 

  58. Dollinger, G., Faestermann, T., and Maier-Komor, P., High-resolution depth profiling of light elements, Nucl. Instrum. Methods. Phys. Res. Sect. B 64, 422 (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Plenum Press, New York

About this chapter

Cite this chapter

Tirira, J., Serruys, Y., Trocellier, P. (1996). Instrumental Equipment. In: Forward Recoil Spectrometry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-0353-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-0353-4_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-8012-2

  • Online ISBN: 978-1-4613-0353-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics